Supporting information for

Efficient Heterogeneous Hydroboration of Alkynes: Enhancing the Catalytic Activity by Cu(0) Incorporated CuFe$_2$O$_4$ Nanoparticles

Xianghua Zeng,*† Chunhua Gong,† Haiyang Guo,† Hao Xu,† Junyong Zhang†, Jingli Xie*†,‡

† College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China E-mail: xianghuazeng@mail.zjxu.edu.cn; jlxie@mail.zjxu.edu.cn

‡ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

Table of contents

1. XPS spectra and EDS analysis of the Cu-CuFe$_2$O$_4$ catalyst
2. The 1H NMR spectra of deuterium-labeling experiments
3. Photographs of before reaction and after reaction of B$_2$Pin$_2$ and phenylacetylene
4. TEM images of Cu-CuFe$_2$O$_4$ NPs before and after reaction
5. The photographs of reusability of Cu-CuFe$_2$O$_4$ catalyst
6. PXRD of Cu-CuFe$_2$O$_4$ catalyst after reused six times
7. Analytic data of the obtained compounds
8. References
9. 1H-NMR and 13C-NMR spectra of the obtained compounds
1. XPS spectra and EDS analysis of the catalyst

Fig. S1. The XPS spectrum of Cu-CuFe$_2$O$_4$ MNPs: (A) survey, (B) Cu 2p, (C) Fe 2p and SEM-EDS of Cu-CuFe$_2$O$_4$ MNPs (D).

2. The 1H NMR spectrum of deuterium-labeling experiments
2.1 The hydroboration reaction of phenylacetylene with B$_2$Pin$_2$ in methanol-d_4
2.2 The hydroboration reaction of phenylacetylene-d_1 with B_2Pin_2 in methanol

2.3 The hydroboration reaction of phenylacetylene-d_1 with B_2Pin_2 in methanol-d_4
2.4 The hydroboration reaction of oct-4-yne with B$_2$Pin$_2$ in methanol-d_4
3. Photographs of before reaction and after reaction of B$_2$Pin$_2$ and phenylacetylene

Fig. S2. Left two are CuCl/PPh$_3$ system, and the right two are Cu-CuFe$_2$O$_4$ NPs catalytic system.

4. TEM images of Cu-CuFe$_2$O$_4$ NPs before and after reaction

Fig. S3. TEM images of Cu-CuFe$_2$O$_4$ NPs: (A) before reaction and (B) after reused six times.

5. The photographs of reusability of Cu-CuFe$_2$O$_4$ catalyst
Fig. S4. The reusability of Cu-CuFe$_2$O$_4$ catalyst in the hydroboration of alkynes

6. PXRD of Cu-CuFe$_2$O$_4$ catalyst after reused six times.

Fig. S5. X-ray powder diffractogram of the synthesized Cu-CuFe$_2$O$_4$ nanoparticles (red line) and after reused six times (blue line).
7. Analytic data of the obtained compounds:

(E)-4,4,5,5-tetramethyl-2-styryl-1,3,2-dioxaborolane (2a)\(^{[1]}\): Colorless oil, yield 95%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.477-7.496 (m, 2H), 7.470 (d, \(J = 18.8\) Hz, 1H), 7.285-7.351 (m, 3H), 6.168 (d, \(J = 18.4\) Hz, 1H), 1.312 (s, 12H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 149.50, 137.41, 128.89, 128.56, 127.04, 83.35, 24.81. GC-MS: M\(^+\) m/z 230.2.

(E)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane (2b)\(^{[2]}\): Colorless oil, yield 90%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.345-7.392 (m, 3H), 7.127-7.147 (m, 2H), 6.100 (d, \(J = 18.4\) Hz, 1H), 2.239 (s, 3H), 1.306 (s, 12H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 149.45, 138.96, 134.57, 129.27, 127.00, 83.27, 24.80, 21.34. GC-MS: M\(^+\) m/z 244.2.

(E)-4,4,5,5-tetramethyl-2-(3-methylstyryl)-1,3,2-dioxaborolane (2c)\(^{[1]}\): Colorless oil, yield 91%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.369 (d, \(J = 18.4\) Hz, 1H), 7.202-7.297 (m, 3H), 7.096-7.115 (m, 1H), 6.147 (d, \(J = 18.4\) Hz, 1H), 2.342 (s, 3H), 1.309 (s, 12H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 149.65, 138.07, 137.40, 129.70, 128.44, 127.76, 124.22, 83.30, 24.80, 21.40. GC-MS: M\(^+\) m/z 244.2.

(E)-2-(4-ethylstyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d)\(^{[2]}\): Colorless oil, yield 90% \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.356-7.421 (m, 3H), 7.155-7.175 (m, 2H), 6.117 (d, \(J = 18.4\) Hz, 1H), 2.638 (q, \(J = 7.6\) Hz, 2H), 1.309 (s, 12H), 1.226 (t, \(J = 7.6\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 149.49, 145.30, 134.99, 128.68, 126.99, 83.26, 28.69, 24.81, 15.41. GC-MS: M\(^+\) m/z 258.2.

(E)-4,4,5,5-tetramethyl-2-(4-propylstyryl)-1,3,2-dioxaborolane (2e): Colorless oil, yield 92%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.358-7.415 (m, 3H), 7.132-7.152 (m, 2H), 6.119 (d, \(J = 18.4\) Hz, 1H), 2.553-2.591 (m, 2H), 1.583-1.676 (m, 2H), 1.309 (s, 12H), 0.931 (t, \(J = 7.6\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 149.52, 143.77, 134.99, 128.68, 126.99, 83.25, 37.85, 24.80, 24.40, 13.82. GC-MS: M\(^+\) m/z 272.2.

(E)-2-(4-butylstyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2f): Colorless oil, yield 92%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.350-7.409 (m, 3H), 7.132-7.152 (m, 2H), 6.109 (d, \(J = 18.4\) Hz, 1H), 2.594 (d, \(J = 7.6\) Hz, 2H), 1.546-1.621 (m, 2H), 1.305-1.369 (m, 14H), 0.915 (t, \(J = 7.2\) Hz, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 149.51,
GC-MS: M⁺ m/z 286.2.

(E)-2-(4-hexylstyrlyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2g)[1]: Colorless oil, yield 89%. ¹H NMR (400 MHz, CDCl₃) δ: 7.870 (d, J = 8.4 Hz, 1H), 7.352-7.409 (m, 3H), 7.249-7.269 (m, 1H), 7.130-7.150 (m, 1H), 6.110 (d, J = 18.4 Hz, 1H), 2.652 (t, J = 8.0 Hz, 1H), 2.578 (t, J = 5.6 Hz, 3H), 1.599-1.627 (m, 2H), 1.306-1.316 (m, 14H), 0.883 (dt, J = 6.8, 3.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 149.51, 148.83, 144.05, 134.94, 128.59, 128.00, 35.75, 31.48, 26.56, 24.80, 22.53, 14.03. GC-MS: M⁺ m/z 300.2.

(E)-2-(4-methoxystyrlyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2h): Colorless oil, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ: 7.419-7.441 (m, 2H), 7.344 (d, J = 18.8 Hz, 2H), 6.859 (d, J = 8.8 Hz, 1H), 6.009 (d, J = 18.4 Hz, 1H), 3.806 (s, 3H), 1.301 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ: 160.24, 149.04, 130.27, 128.45, 113.93, 83.21, 55.27, 24.80. GC-MS: M⁺ m/z 260.2.

(E)-2-(4-ethoxystyrlyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2i)[1]: Colorless oil, yield 91%. ¹H NMR (400 MHz, CDCl₃) δ: 7.398-7.427 (m, 2H), 7.341 (d, J = 19.2 Hz, 2H), 6.842 (d, J = 8.8 Hz, 1H), 5.999 (d, J = 18.4 Hz, 1H), 4.000-4.053 (m, 2H), 1.402 (d, J = 6.8 Hz, 3H), 1.300 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.66, 149.12, 130.16, 128.45, 114.43, 83.18, 63.42, 24.80, 14.80. GC-MS: M⁺ m/z 274.2.

(E)-2-(4-chlorostyrlyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2j)[1]: white solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ: 7.349-7.408 (m, 3H), 7.281-7.302 (m, 2H), 6.124 (d, J = 18.4 Hz, 1H), 1.302 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ: 148.00, 135.86, 134.58, 128.77, 128.21, 83.44, 24.80. GC-MS: M⁺ m/z 264.1.

(E)-2-(4-fluorostyrlyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2k)[1]: Colorless oil, yield 92%. ¹H NMR (400 MHz, CDCl₃) δ: 7.433-7.469 (m, 2H), 7.345 (d, J = 18.4 Hz, 1H), 7.014 (d, J = 8.4 Hz, 1H), 6.066 (d, J = 18.8 Hz, 1H), 1.304 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ: 164.34, 161.89, 148.14, 133.64, 128.73, 128.64, 115.65, 115.43, 83.38, 24.79. GC-MS: M⁺ m/z 248.1.

(E)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)aniline(2l): light yellow solid, yield 84%. ¹H NMR (400 MHz, CDCl₃) δ: 7.278-7.324 (m, 3H), 6.618.
(d, J = 8.4 Hz, 1H), 5.930 (d, J = 18.4 Hz, 1H), 3.806 (s, 2H), 1.294 (s, 12H); 13C NMR (100 MHz, CDCl$_3$) δ: 149.56, 147.33, 128.56, 128.18, 114.82, 83.08, 24.80. GC-MS: M$^+$ m/z 245.1.

(E)-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl)pyridine (2m)$^{[1]}$: Colorless oil, yield 94%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.585 (d, J = 4.4 Hz, 1H), 7.617-7.659 (m, 1H), 7.374-7.460 (m, 2H), 7.145-7.176 (m, 1H), 6.613 (d, J = 18.4 Hz, 1H), 1.290 (s, 12H); 13C NMR (100 MHz, CDCl$_3$) δ: 155.36, 149.66, 148.68, 136.49, 123.08, 122.23, 83.46, 24.77. GC-MS: M$^+$ m/z 231.1.

(E)-4,4,5,5-tetramethyl-2-(2-(thiophen-2-yl)vinyl)-1,3,2-dioxaborolane (2n): Colorless oil, yield 87%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.464 (d, J = 18.0 Hz, 1H), 7.230 (d, J = 5.2 Hz, 1H), 7.071 (d, J = 3.2 Hz, 1H), 6.975 (dd, J = 3.6, 2.4 Hz, 1H), 5.907 (d, J = 18.0 Hz, 1H), 1.290 (s, 12H); 13C NMR (100 MHz, CDCl$_3$) δ: 143.89, 141.79, 127.71, 127.61, 126.29, 83.34, 24.78. GC-MS: M$^+$ m/z 236.1.

(E)-4,4,5,5-tetramethyl-2-(2-(thiophen-3-yl)vinyl)-1,3,2-dioxaborolane (2o)$^{[1]}$: Colorless oil, yield 90%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.373 (d, J = 18.4 Hz, 1H), 7.283-7.297 (m, 2H), 7.245-7.256 (m, 1H), 5.937 (d, J = 18.4 Hz, 1H), 1.295 (s, 12H); 13C NMR (100 MHz, CDCl$_3$) δ: 143.13, 132.27, 126.11, 124.99, 124.88, 83.34, 24.79. GC-MS: M$^+$ m/z 236.1.

(E)-1-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-2-en-1-ol (2p): Colorless oil, yield 92%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.540-7.558 (m, 1H), 7.373 7.269-7.388 (m, 5H), 5.937 (dd, J = 18.0, 5.2 Hz, 1H), 5.738 (dd, J = 18.0, 1.2 Hz, 1H), 5.229 (dd, J = 5.6, 1.6 Hz, 1H), 1.246 (s, 12H); 13C NMR (100 MHz, CDCl$_3$) δ: 153.62, 141.90, 128.67, 128.56, 127.79, 126.59, 126.47, 83.38, 76.11, 24.77. GC-MS: M$^+$ m/z 260.2.

(E)-2-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-2-ol (2q)$^{[1]}$: Colorless oil, yield 91%. 1H NMR (400 MHz, CDCl$_3$) δ: 6.706 (d, J = 18.0 Hz, 1H), 5.597 (d, J = 18.0 Hz, 1H), 1.594 (s, 1H), 1.300 (s, 6H), 1.262 (s, 12H); 13C NMR (100 MHz, CDCl$_3$) δ: 159.76, 104.95, 83.28, 71.80, 29.10, 24.76. GC-MS: M$^+$ m/z 212.1.

(E)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-ol (2r)$^{[1]}$: Colorless
oil, yield 90%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.544-7.621 (m, 1H), 5.541 (dd, $J = 18.0, 1.2$ Hz, 1H), 3.705 (t, $J = 6.4$ Hz, 2H), 2.417 (q, $J = 6.4$ Hz, 2H), 1.691 (s, 1H), 1.246 (s, 12H); 13C NMR (100 MHz, CDCl$_3$) δ: 150.02, 105.17, 83.19, 61.20, 39.06, 24.75. GC-MS: M$^+$/m/z 198.1.

(E)-2-(3,3-dimethylbut-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2s): Colorless oil, yield 87%. 1H NMR (400 MHz, CDCl$_3$) δ: 6.625 (d, $J = 18.4$ Hz, 1H), 5.336 (d, $J = 18.8$ Hz, 1H), 1.258 (s, 12H), 1.003 (s, 9H); 13C NMR (100 MHz, CDCl$_3$) δ: 164.40, 82.98, 35.00, 24.78. GC-MS: M$^+$/m/z 210.2.

(E)-2-(hex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2u): Colorless oil, yield 95%. 1H NMR (400 MHz, CDCl$_3$) δ: 6.615 (dt, $J = 16.6, 6.4$ Hz, 1H), 5.404 (d, $J = 18.0$ Hz, 1H), 2.105-2.158 (m, 2H), 1.296-1.401 (m, 4H), 1.246 (s, 12H), 0.867 (t, $J = 7.2$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ: 154.79, 128.64, 82.95, 35.49, 31.71, 28.91, 24.75, 22.23, 13.90. GC-MS: M$^+$/m/z 223.2.

(E)-4,4,5,5-tetramethyl-2-(oct-1-en-1-yl)-1,3,2-dioxaborolane (2v): Colorless oil, yield 94%. 1H NMR (400 MHz, CDCl$_3$) δ: 6.623 (dt, $J = 18.0, 6.4$ Hz, 1H), 5.404 (d, $J = 18.0$ Hz, 1H), 2.104-2.114 (m, 4H), 1.308-1.424 (m, 4H), 1.233 (s, 12H), 0.845-0.914 (m, 6H); 13C NMR (100 MHz, CDCl$_3$) δ: 145.96, 82.87, 30.54, 24.69, 23.28, 22.38, 14.08, 14.03. GC-MS: M$^+$/m/z 223.2.

(E)-4,4,5,5-tetramethyl-2-(1-phenylprop-1-en-2-yl)-1,3,2-dioxaborolane (2x): Colorless oil, yield 90%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.297-7.393 (m, 3H), 7.217-
7.254 (m, 2H), 7.143-7.162 (m, 1H), 1.990 (s, 3H), 1.313 (s, 12H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 142.34, 137.90, 129.39, 128.01, 127.07, 83.50, 24.84, 24.73, 15.90. GC-MS: M\(^+\) m/z 244.2.

(E)-ethyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (2y): Colorless oil, yield 70%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 6.738 (d, \(J=18.0\) Hz, 1H), 6.593 (d, \(J=18.0\) Hz, 1H), 4.177 (q, \(J=7.2\) Hz, 2H), 1.251 (s, 12H), 1.192-1.210(m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 174.88, 138.70, 125.91, 83.15, 60.56, 24.78, 24.70, 24.43, 14.15. GC-MS: M\(^+\) m/z 226.1.

(E)-methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate (2z): Colorless oil, yield 75%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 6.761 (d, \(J=18.4\) Hz, 1H), 6.610 (d, \(J=18.4\) Hz, 1H), 3.744 (s, 3H), 1.269(s, 12H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 166.33, 138.70, 138.15, 84.03, 51.77, 24.71. HRMS m/z (ESI): Calcd for C\(_{10}\)H\(_{17}\)BO\(_4\)Na ([M+Na]\(^+\)): 235.1112, Found 235.1110.

(Z)-N-methyl-N-styrylmethanesulfonamide (3a): White solid, yield 95% (Z:E=3:1). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.292-7.404 (m, 5H), 6.333 (d, \(J=8.8\) Hz, 1H), 6.055 (d, \(J=8.8\) Hz, 1H), 2.932 (s, 3H), 2.892 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 134.69, 129.00, 128.33, 127.72, 126.97, 120.64, 36.59, 36.21. HRMS m/z (ESI): Calcd for C\(_{10}\)H\(_{13}\)O\(_2\)SNa ([M+Na]\(^+\)): 234.0559, Found 234.0558.

1,3-diphenylpropan-1-one (3b): Colorless oil, yield 92%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 7.952-7.973 (m, 2H), 7.541-7.578 (m, 1H), 7.435-7.474 (m, 2H), 7.210-7.324 (m, 5H), 3.331 (t, \(J=7.6\) Hz, 2H), 3.073 (t, \(J=7.6\) Hz, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 199.23, 141.27, 136.80, 133.07, 128.60, 128.52, 128.42, 128.03, 127.16, 126.12, 40.46, 30.11. HRMS m/z (ESI): Calcd for C\(_{15}\)H\(_{14}\)O\(_2\)Na ([M+Na]\(^+\)): 233.0937, Found 233.0935.

(5S)-2-methyl-5-(prop-1-en-2-yl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohexanone (3c): white solid, yield 94%. Colorless oil, yield 95%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 4.644-4.699 (m, 2H), 2.532-2.592 (m, 1H), 2.408-2.423 (m, 2H), 2.374-2.389 (m, 1H), 1.952-2.216 (m, 1H), 1.664-1.791 (m, 5H), 1.158-1.204 (m, 12H), 1.029-1.046 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 212.08, 147.90, 109.43, 83.38, 46.13, 45.83, 44.36, 32.41, 24.81, 24.77, 24.57, 20.69, 13.91. HRMS m/z (ESI):
Calcd for C_{16}H_{27}O_{3}Na ([M+Na]^+): 301.1945, Found 301.1944.

Ethyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-enoate (3d): Colorless oil, yield 95%. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\): 5.882 (s, 1H), 5.672 (s, 1H), 4.112 (q, \(J=7.2\) Hz, 2H), 3.155 (s, 2H), 1.251 (s, 12H), 1.215-1.235 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\): 172.16, 131.75, 83.67, 60.42, 40.66, 24.67, 14.21. HRMS \(m/z\) (ESI): Calcd for C_{12}H_{21}O_{4}Na ([M+Na]^+): 263.1425, Found 263.1422.

8. References

9. 1H-NMR and 13C-NMR spectra of the obtained compounds

2a
2q

[Chemical structure image]

[Graphical representation of a 1D NMR spectrum]
$2t$
2z