Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary material

Facilely preparation photo-response TiO₂@copper wire mesh with quick on/off switchable superwetting for high efficiency oil-water separation

Bing Shi^{a, b}, Xiaohua Jia^{a*}and ZhiguangGuo^{b*}

^a School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
^b State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

*Corresponding author. Tel: 0086-931-4968105; Fax: 0086-931-8277088. Email address: <u>zguo@licp.cas.cn</u> (Guo)

Name	Page No	
Local enlarged SEM image of the original copper wire mesh	2	
Figure S1	-2-	
SEM image of CWM after STA modification	-3-	
Figure S2		
WCA and underwater OCA of TiO ₂ @CWM under different	1	
modification conditions	-4-	
Figure S3		
The underwater oil contact angle of different oils was also tested	_	
Figure S4	-3-	
EDS analysis of TiO ₂ @CWM after UV irradiated	(
Figure S5	-0-	
Pollution and self-cleaning process of TiO ₂ @CWM	7	
Figure S6	- / -	
The separation capability of the TiO ₂ @CWM after self-cleaning	0	
process.	-8-	
Figure S7		
The WCA of U-TiO ₂ @CWM after 20 cycles of abrasion.	0	
Figure S8	-9-	
The flux and separation efficiency of TiO ₂ @CWM after abrasion	10	
test.	-10-	

Figure S9	

Figure S1. Local enlarged SEM image of the original copper wire mesh.

Figure S2. SEM images of CWM after STA modification

Figure S3. WCA and underwater OCA of TiO₂@CWM under different modification conditions

Figure S4. The underwater OCA of different oils was also tested.

Figure S5. EDS analysis of TiO₂@CWM after UV irradiated.

Figure S6. Pollution and self-cleaning process of $TiO_2@CWM$.

Figure S7. The separation capability of the $TiO_2@CWM$ (a) heavy oil-water mixture and (b) light oil-water mixture after self-cleaning process.

Figure S8. The WCA of U-TiO₂@CWM after 20 cycles of abrasion.

Figure S9. (a) Heavy oil - water separation efficiency and flux of S-TiO₂@CWM after abrasion test. (b) Light oil-water separation efficiency and flux of U-TiO₂@CWM after abrasion test.

Video S1. Dichloroethane-water separation process of the $TiO_2@CWM$: oil quickly permeated through the mesh, while water was blocked in the upper glass tube.

Video S2. Petroleum ether-water separation process of the $TiO_2@CWM$: water quickly permeated through the mesh, while oil was blocked in the upper glass tube.

Video S3. The friction properties of the prepared $TiO_2@CWM$ were measured by sandpaper and weight.

Video S4. The friction surface of the TiO_2 @CWM was the same as that of the non-friction surface, and the water drops can roll rapidly.