Supplementary information

Synthesis and non-volatile electrical memory characteristics of triphenylamine-based polyimides with flexibility segments

Yanhua Yang,1 Jing-Cheng Xia,2 Youxuan Zheng,2 Yingzhong Shen,1* Gaozhang Gou3**

1 Applied Chemistry Department, School of Material Science & Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, P. R. China.
2 State Key Laboratory of coordination chemistry, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
3 Key Laboratory of Natural Pharmaceutical & Chemical Biology of Yunnan Province, College of Science, Honghe University, Mengzi, 661100, P. R. China.

Content

Figure S1. 1H NMR spectrum of compound (4) in DMSO-d6 ..2
Figure S2. 13C NMR spectrum of compound (4) in DMSO-d6 ..2
Figure S3. FT-IR spectrum of compound (4) ...2
Figure S4. C-H HSQC spectrum of compound (4) in DMSO-d6 ...3
Figure S5. Relationship between the ON/OFF ratio of current and the applied voltage3

* Corresponding author, E-mail address: yz_shen@nuaa.edu.cn (Y.-Z. S.).
** Corresponding author, E-mail address: hhxylxyhxx@126.com
Figure S1. 1H NMR spectrum of compound (4) in DMSO-d_6.

Figure S2. 13C NMR spectrum of compound (4) in DMSO-d_6.

Figure S3. FT-IR spectrum of compound (4).
Figure S4. C-H HSQC spectrum of compound (4) in DMSO-\textit{d}_6.

Figure S5. Relationship between the ON/OFF ratio of current and the applied voltage for ITO/PI(TPA-PMDA)/Al and ITO/PI(TPA-BPDA)/Al, respectively.