Supporting information

Green synthesis of porous Au-Nx-TiO2 nanospheres for solar light induced photocatalytic degradation of diazo, triazo dyes and their eco-toxic effects

N. Pugazhenthiran,1,2,* R.V. Mangalaraja,1,3,** P. Sathishkumar,4 S. Murugesan,2 T. Muneeswaran,5 T. Pandiyarajan,1 S. Naveenraj,1 D. Contreras,6,7 S. Anandan8

1Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion 4070409, Chile.
2School of Chemistry, Madurai Kamaraj University, Madurai-625021, India.
3Technological Development Unit, University of Concepcion, Coronel Industrial Park, Coronel-4191996, Chile.
4Department of Physical Chemistry, Aksum University, Axum-1010, Ethiopia.
5Department of Marine & Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
6Department of Analytical and Inorganic Chemistry, Faculty of Chemical Sciences, Center for Biotechnology, University of Concepcion, Concepcion 4070409, Chile.
7Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015, India.

Corresponding Authors
*The author (N.P): npugazhmku@gmail.com; Tel.: +56-412203664; Fax: +56-41-2203391.
**The author (R.V.M): mangal@udec.cl; Tel.: +56-412207389; Fax: +56-41-2203391.

Fig. S1. The molecular structures for the model pollutants (diazo (RR120) and triazo dyes (DB71)).
Fig. S2. SEM images of porous TiO$_2$ NSPs (a,b) and N$_x$-TiO$_2$ NSPs (c,d).
Fig. S3. EDAX spectra of porous TiO$_2$ NSPs (a) and N$_x$-TiO$_2$ NSPs (b).
Fig. S4. TEM images (a), HRTEM image (b), EDAX spectrum (c) of porous Au-TiO$_2$ NSPs.

Inset (c): Corresponding SAED pattern.
Fig. S5. XPS survey spectra of prepared photocatalysts.

- $\text{Au}_x\text{-N}_x\text{-TiO}_2$
- $\text{N}_x\text{-TiO}_2$
- Au-TiO_2
- TiO_2
Fig. S6. UV-visible spectra of RR120 (a), DB71 (b) at different irradiation periods in the presence of porous Au-Nx-TiO2 NSPs. [Dyes] = 4 × 10^{-5} M and [Au-Nx-TiO2 NSPs] = 0.2 g L^{-1}. Plot of (C/C_0) vs. time for the photocatalytic degradation of RR120 (c) and DB71 (d) at various concentration of porous Au-Nx-TiO2 NSPs [Dye] = 4 × 10^{-5} M. Inset: corresponding rate constant plot. Error bars are the standard deviations of triplicate experiments.
Fig. S7. PL spectra of 2-hydroxy terephthalic acid (standard) at various concentrations (a), fluorescence calibration curves as a function of 2-hydroxy terephthalic acid concentration (b,c), PL spectra of terephthalic acid at various irradiation times in the presence of porous Au-N₃-TiO₂ NSPs (d). [Catalysts] = 0.2 g L⁻¹; [TA] = 5 × 10⁻⁴ M.
Table S8. Summary of the results obtained for the amount of photocatalytic degradation of azo dyes and formation of HO• radical in the presence of various catalysts. *(The reaction parameters are identical in the dye degradation and HO• radical quantification)*

<table>
<thead>
<tr>
<th>Irradiation</th>
<th>Catalyst</th>
<th>Amount of HO• radical formation (10⁻⁵ M)</th>
<th>Amount of degradation (10⁻⁵ M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Solar light</td>
<td>TiO₂ (Degussa P25)</td>
<td>0.33 ± 0.04</td>
<td>1.80 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>Porous TiO₂ NSPs</td>
<td>0.47 ± 0.03</td>
<td>1.95 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>Porous Nₓ-TiO₂ NSPs</td>
<td>0.89 ± 0.05</td>
<td>2.79 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>Porous Au-TiO₂ NSPs</td>
<td>1.21 ± 0.03</td>
<td>3.36 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Porous Au-Nₓ-TiO₂ NSPs</td>
<td>1.79 ± 0.05</td>
<td>3.90 ± 0.08</td>
</tr>
<tr>
<td>Solar (visible) light</td>
<td>TiO₂ (Degussa P25)</td>
<td>0.05 ± 0.01</td>
<td>0.40 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>Porous TiO₂ NSPs</td>
<td>0.07 ± 0.01</td>
<td>0.44 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Porous Nₓ-TiO₂ NSPs</td>
<td>0.44 ± 0.02</td>
<td>1.04 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>Porous Au-TiO₂ NSPs</td>
<td>0.66 ± 0.02</td>
<td>1.30 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>Porous Au-Nₓ-TiO₂ NSPs</td>
<td>1.32 ± 0.01</td>
<td>3.32 ± 0.05</td>
</tr>
<tr>
<td>Solar (λ > 395 nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S9: The principle involved in the photocatalytic degradation is the formation of HO^\cdot radicals by the utilization of the photocatalytically generated excitons. In this context, the photocatalytically generated HO^\cdot radicals in the presence of Au-N$_x$-TiO$_2$ NSPs on the direct solar light irradiation is identified and quantified through the photoluminescence (PL) technique. Terephthalic acid (TA) was used as the probe molecule and a change in the PL intensity of the photocatalytically formed 2-hydroxyterephthalic acid is directly proportional to the amount of the HO^\cdot produced during the photocatalytic reaction. The qualitative identification of the HO^\cdot radicals during the photocatalytic degradation reaction has been reported elsewhere 1-4. It is important to quantify the photocatalytically generated HO^\cdot radicals. The experiments are carried out carefully to make a calibration curve using 2-hydroxyterephthalic acid as shown in Fig. S7a-c. The linear regression ($R^2 = 0.9998$) of the calibration curve clearly indicated that the PL intensity of the 2-hydroxy terephthalic acid is increased with respect to its concentration upto 0.25×10^{-5} M (Fig. S7b) but the linear regression ($R^2 = 0.9936$) slightly deviates at high concentration of 2-hydroxy terephthalic acid (Fig. S7c) which may be caused by 2-hydroxy terephthalic acid absorption and/or fluorescence quenching 5. Fig. S7d reveals that there is no remarkable change in the PL intensity ($\lambda_{\text{max}} = 425$ nm) of aqueous TA in the presence of the catalyst under dark as well as light irradiation in the absence of the porous Au-N$_x$-TiO$_2$ NSPs. Whereas, the PL intensity of TA is increased in the presence of both solar light irradiation and porous Au-N$_x$-TiO$_2$ NSPs in the photocatalytic system due to the formation of 2-hydroxy terephthalic acid through the reaction between TA and the photocatalytically generated hydroxyl radicals (HO^\cdot).
Fig. S10. Histograms showing the percentage degradation of dyes in the presence of Au-Nₓ-TiO₂ NSPs under direct solar light irradiation. The experiments carried out in the both Milli-Q and tap water and concentrations are maintained as follows: [Catalyst] = 0.2 g L⁻¹; [dye] = 4 × 10⁻⁵ M.
Fig. S11. Histograms showing the comparison of the photocatalytic degradation rate constant (a, b) and mineralization (c,d) of RR120 and DB71 in the presence of oxidants with and without porous Au-Nx-TiO2 NSPs under direct solar light irradiation. Inset (a,b): maximized area of corresponding plots. The experiments carried out in the both Milli-Q and tap water and concentrations are maintained as follows: [Catalyst] = 0.2 g L\(^{-1}\); [dye] = 4 \times 10^{-5} M and [Oxidants] = 2.5 \times 10^{-4} M.
Fig. S12. Photocatalytic degradation of DB71 using recycled porous Au-N_x-TiO_2 NSPs (a). Initial concentrations: [Catalyst] = 0.2 g L^{-1}; [dye] = 4 \times 10^{-5} M. DRS of porous Au-N_x-TiO_2 NSPs before and recycled (b).
References

