Supplementary Information

to the article

Title: Self-assembly of cucurbiturils and cyclodextrins to supramolecular millstones with naphthalene derivatives capable of translocations in the host cavities

Authors: Artem I. Vedernikov,a Natalia A. Lobova,a Lyudmila G. Kuz’mina,b Marina V. Fomina,a Yuri A. Strelenko,c Judith A. K. Howardd and Sergey P. Gromova,e,*

*aPhotochemistry Center of RAS, FSRC “Crystallography and Photonics”, Russian Academy of Sciences, ul. Novatorov 7A-1, Moscow 119421, Russian Federation; bN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 31, Moscow 119991, Russian Federation; cN. D. Zelinskiy Institute of Organic Chemistry, Russian Academy of Sciences, Leninskiy prosp. 47, Moscow 119991, Russian Federation; dChemistry Department, Durham University, South Road, Durham DH1 3LE, UK; eChemistry Department, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation

spgromov@mail.ru

Journal: New Journal of Chemistry

Table of Contents

<table>
<thead>
<tr>
<th></th>
<th>Fig. S1 1H NMR spectrum of compound 1.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Fig. S2 1H NMR spectrum of compound 2.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Fig. S3 1H NMR spectrum of compound 3.</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Fig. S4 1H NMR spectrum of compound 4.</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Fig. S5 1H NMR spectrum of compound 5.</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Fig. S6 13C NMR spectrum of compound 1.</td>
<td>8</td>
</tr>
</tbody>
</table>
7. Fig. S7 13C NMR spectrum of compound 2.
8. Fig. S8 13C NMR spectrum of compound 3.
9. Fig. S9 13C NMR spectrum of compound 4.
10. Fig. S10 13C NMR spectrum of compound 5.
11. Fig. S11 1H NMR spectrum of complex (1)$_2$@CB[8]·6.5H$_2$O.
12. Fig. S12 1H NMR spectrum of complex 2(5)$_2$@γ-CD-6H$_2$O.
13. Fig. S13 1H NMR spectrum of complex (5)$_2$@CB[8]·5H$_2$O.
14. Fig. S14 1H NMR spectra of compound 4 and its mixture with β-CD.
15. Fig. S15 1H NMR spectra of compound 4 and its mixture with γ-CD.
16. Fig. S16 1H NMR spectra of compound 5 and its mixture with β-CD.
17. Fig. S17 1H NMR spectra of compound 5 and its mixture with γ-CD.
18. Fig. S18 1H NMR spectra of compound 2 and its mixture with γ-CD.
19. Fig. S19 1H NMR spectra of compound 5 and its mixtures with CB[7].
20. Fig. S20 1H NMR spectrum of a mixture of compound 5 and CB[7].
21. Fig. S21 1H NMR spectra of compound 2 and its mixture with CB[7].
22. Fig. S22 NOESY spectrum of a mixture of compound 3 and β-CD.
23. Fig. S23 Absorption spectrum of compound 1.
24. Fig. S24 Fluorescence spectrum of compound 1.
25. Fig. S25 Absorption and fluorescence spectra of compound 2 and complex 2@β-CD.
26. Fig. S26 Absorption and fluorescence spectra of compound 4 and complex 4@β-CD.
27. Fig. S27 Absorption and fluorescence spectra of compound 5 and complex 5@β-CD.
28. Fig. S28 Absorption and fluorescence spectra of compound 2 and complex 2@γ-CD.
29. Fig. S29 Absorption and fluorescence spectra of compound 4 and complex 4@γ-CD.
30. Fig. S30 Absorption and fluorescence spectra of compound 5 and complex 5@γ-CD.
31. Fig. S31 Absorption and fluorescence spectra of compound 2 and complexes 2@CB[7] and 2@(CB[7])$_2$.
32. Fig. S32 Absorption and fluorescence spectra of compound 4 and complexes 4@CB[7] and 4@(CB[7])$_2$.
33. Fig. S33 Absorption and fluorescence spectra of compound 5 and complexes 5@CB[7] and 5@(CB[7])$_2$.
34. Fig. S34 Absorption and fluorescence spectra of compound 5 and complexes 5@CB[8] and (5)$_2$@CB[8].
Fig. S1 1H NMR spectrum of compound 1 (500.13 MHz, DMSO-d_6, 25 °C).
Fig. S2 1H NMR spectrum of compound 2 (500.13 MHz, DMSO-d_6, 26 °C).
Fig. S3 1H NMR spectrum of compound 3 (500.13 MHz, DMSO-d_6, 26 °C).
Fig. S4 1H NMR spectrum of compound 4 (500.13 MHz, DMSO-d_6, 26 °C).
Fig. S5 1H NMR spectrum of compound 5 (500.13 MHz, DMSO-d_6, 28 °C).
Fig. S6 13C NMR spectrum of compound 1 (125.76 MHz, DMSO-d_6, 25 °C).
Fig. S7 13C NMR spectrum of compound 2 (125.76 MHz, DMSO-d_6, 26 °C).
Fig. S8 13C NMR spectrum of compound 3 (125.76 MHz, DMSO-d_6, 25 °C).
Fig. S9 ^{13}C NMR spectrum of compound 4 (125.76 MHz, DMSO-d_6, 25 °C).
Fig. S10 13C NMR spectrum of compound 5 (125.76 MHz, DMSO-d_6, 26 °C).
Fig. S11 1H NMR spectrum of complex $(1)_2@CB[8] \cdot 6.5\text{H}_2\text{O}$, which was obtained by crystallization ($C_{\text{complex}} = 3 \times 10^{-4} \text{ M}$), D_2O, 25 °C.
Complex 2(5)·γ-CD

Fig. S12 1H NMR spectrum of complex 2(5)@γ-CD·6H$_2$O, which was obtained by crystallization ($C_{\text{complex}} = 3 \times 10^{-4}$ M), D$_2$O, 25 °C.
Complex (5)$_2$@CB[8]

Fig. S13 1H NMR spectrum of complex (5)$_2$@CB[8]·5H$_2$O, which was obtained by crystallization (sat., $C_{\text{complex}} < 1\times10^{-4}$ M), D$_2$O, 25 °C.
Fig. S14 1H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton regions) of (a, c) compound 4 and (b, d) a 1:6.0 mixture of compound 4 and β-CD ($C_4 = 5.0 \times 10^{-3}$ M), D$_2$O–MeCN-d_3 (10:1, v/v), 25 °C.

Fig. S15 1H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton regions) of (a, c) compound 4 and (b, d) a 1:7.4 mixture of compound 4 and γ-CD ($C_4 = 4.3 \times 10^{-4}$ M), D$_2$O–MeCN-d_3 (10:1, v/v), 25 °C.
Fig. S16 1H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton regions) of (a, c) compound 5 and (b, d) a 1:5.8 mixture of compound 5 and β-CD ($C_5 = 5.2\times10^{-4}$ M), D$_2$O–MeCN-d$_3$ (10:1, v/v), 25 °C.

Fig. S17 1H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton regions) of (a, c) compound 5 and (b, d) a 1:6.1 mixture of compound 5 and γ-CD ($C_5 = 5.2\times10^{-4}$ M), D$_2$O–MeCN-d$_3$ (10:1, v/v), 25 °C.
Fig. S18 1H NMR spectra ((a, b) aromatic and (c, d) aliphatic proton regions) of (a, c) compound 2 and (b, d) a 1:6.5 mixture of compound 2 and γ-CD ($C_2 = 4.7 \times 10^{-4}$ M), D$_2$O–MeCN-d_3 (10:1, v/v), 25 °C.

Fig. S19 1H NMR spectra (aromatic proton region) of (a) compound 5 and (b) 1:0.7 and (c) 1:1.9 mixtures of compound 5 and CB[7] ($C_s = 6.4 \times 10^{-4}$ M), D$_2$O–MeCN-d_3 (10:1, v/v), 25 °C.
Fig. S20 1H NMR spectrum of a 1:1.9 mixture of compound 5 and CB[7] ($C_5 = 6.4 \times 10^{-4}$ M), D$_2$O–MeCN-d_3 (10:1, v/v), 25 °C.
Fig. S21 1H NMR spectra of (a) compound 2 and (b) a 1:1.9 mixture of compound 2 and CB[7] ($C_2 = 5.7 \times 10^{-3}$ M), D$_2$O–MeCN-d_3 (10:1, v/v), 25 °C.
Fig. S22 NOESY spectrum of an equimolar mixture of compound 3 and β-CD ($C_3 = C_{CD} = 6 \times 10^{-3}$ M), D$_2$O, 25 °C.
Fig. S23 Absorption spectrum of compound 1 ($C = 2 \times 10^{-5}$ M), water, ambient temperature, 1-cm quartz cell.

Fig. S24 Fluorescence spectrum of compound 1 ($C = 1 \times 10^{-6}$ M), water, ambient temperature. The fluorescence was excited by light at 356 nm.
Fig. S25 (a) Absorption and (b) fluorescence spectra of compound 2 \((C_2 = 2 \times 10^{-5} \text{ M for absorption and } C_2 = 1 \times 10^{-5} \text{ M for fluorescence})\) and respective evaluated spectra of complex 2@β-CD, water, ambient temperature. The fluorescence was excited by light at 313 nm.
Fig. S26 (a) Absorption and (b) fluorescence spectra of compound 4 (C₄ = 2×10⁻⁵ M for absorption and C₄ = 1×10⁻⁵ M for fluorescence) and respective evaluated spectra of complex 4@β-CD, water, ambient temperature. The fluorescence was excited by light at 319 nm.
Fig. S27 (a) Absorption and (b) fluorescence spectra of compound 5 ($C_5 = 2 \times 10^{-5}$ M for absorption and $C_5 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex 5@β-CD, water, ambient temperature. The fluorescence was excited by light at 311 nm.
Fig. S28 (a) Absorption and (b) fluorescence spectra of compound 2 ($C_2 = 2 \times 10^{-5}$ M for absorption and $C_2 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex $2@\gamma$-CD, water, ambient temperature. The fluorescence was excited by light at 332 nm.
Fig. S29 (a) Absorption and (b) fluorescence spectra of compound 4 ($C_4 = 2 \times 10^{-5}$ M for absorption and $C_4 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex 4@γ-CD, water, ambient temperature. The fluorescence was excited by light at 319 nm.
Fig. S30 (a) Absorption and (b) fluorescence spectra of compound 5 ($C_5 = 2 \times 10^{-5}$ M for absorption and $C_5 = 1 \times 10^{-5}$ M for fluorescence) and respective evaluated spectra of complex 5@γ-CD, water, ambient temperature. The fluorescence was excited by light at 321 nm.
Fig. S31 (a) Absorption and (b) fluorescence spectra of compound 2 ($C_2 = 2 \times 10^{-5}$ M for absorption and $C_2 = 1 \times 10^{-6}$ M for fluorescence) and respective evaluated spectra of complexes $2@CB[7]$ and $2@(CB[7])_2$, water, ambient temperature. The fluorescence was excited by light at 356 nm.
Fig. S32 (a) Absorption and (b) fluorescence spectra of compound 4 ($C_4 = 2 \times 10^{-5}$ M for absorption and $C_4 = 1 \times 10^{-6}$ M for fluorescence) and respective evaluated spectra of complexes 4@CB[7] and 4@(CB[7])$_2$, water, ambient temperature. The fluorescence was excited by light at 356 nm.
Fig. S33 (a) Absorption and (b) fluorescence spectra of compound 5 (C₅ = 2×10⁻⁵ M for absorption and C₅ = 1×10⁻⁶ M for fluorescence) and respective evaluated spectra of complexes 5@CB[7] and 5@(CB[7])₂, water, ambient temperature. The fluorescence was excited by light at 359 nm.
Fig. S34 (a) Absorption and (b) fluorescence spectra of compound 5 \((C_5 = 2 \times 10^{-5} \text{ M for absorption and } C_5 = 1 \times 10^{-6} \text{ M for fluorescence})\) and respective evaluated spectra of complexes 5@CB[8] and \((5)_2@CB[8]\) (per molecule of naphthylpyridine derivative), water, ambient temperature. The fluorescence was excited by light at 333 nm.