Supporting Information

An ESIPT based chromogenic and fluorescence ratiometric probe for Zn$^{2+}$ with imaging in live-cells and tissues

Saswati Gharami,*a Krishnendu Aich,a Deblina Sarkarb,c, Paramita Ghoshb, Nabendu Murmub and Tapan Kumar Mondala

a Department of Chemistry, Jadavpur University, Kolkata-700032.

b Department of Signal Transduction and Biogenis Amines (STBA), Chittaranjan National Cancer Institute, Kolkata- 700026, India.

c Present address: Department of Chemistry, Bagnan College, Howrah, W.B. 711303, India.

CONTENTS

1. UV-Vis study of HBS

2. UV-Vis study of HBB

3. Emission study of HBB

4. Linear responsive curve of HBS depending on Zn$^{2+}$ concentration

5. Job’s plot of HBS for Zn$^{2+}$

6. Determination of detection limit

7. Determination of association constant

8. Lifetime study

9. Fluorescence study

10. 1H NMR spectrum of HBS

11. 13C NMR spectrum of HBS

12. Mass spectrum (HRMS) of HBS

13. 1H NMR spectrum of HBB

14. 13C NMR spectrum of HBB

15. HRMS Mass spectrum of HBB

16. 1H NMR titration of HBS with Zn$^{2+}$

17. Mass spectrum (HRMS) of HBS
18. Mass spectrum (HRMS) of HBS-Zn$^{2+}$...

19. Computational study ...

20. Live cell imaging ..

21. Determination of Quantum yield ...
1. UV-Vis Study of HBS:

Fig. S1. UV-Vis spectra of chemosensor (HBS) (10 µM) upon addition of 2 equivalent of various metal ions i.e., Na⁺, K⁺, Ca²⁺, Mg²⁺, Al³⁺, Mn²⁺, Fe³⁺, Cr³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺ and Hg²⁺

2. UV-Vis Study of HBB:

Fig. S2. Change of absorption spectra of HBB (10 µM) on gradual addition of Zn²⁺ (0 to 40 µM).
3. Emission study of HBB:

Fig. S3. Change of emission spectra of HBB (10 µM) upon gradual addition of Zn$^{2+}$ (0 to 20 µM).

4. By fluorescence method:

Fig. S4. Mole ratio plot of HBS depending on Zn$^{2+}$ concentration
5. Job’s plot of HBS for Zn$^{2+}$:

Stock solution of HBS and Zn$^{2+}$ were prepared in the order of 10 μM in [MeOH/ H$_2$O, 1/1, v/v] (at 25 °C) at pH 7.2 in HEPES buffer in same concentration. The emission spectrum was recorded in each case with different host-guest ratio but the volume remains the same in each case. Job’s plots were drawn by plotting $\Delta F \cdot X_{\text{host}}$ vs X_{host} ($\Delta F =$ change of intensity of the emission spectrum at 478 nm during titration and X_{host} is the mole fraction of the host in each case respectively).

![Job's plot of HBS for Zn$^{2+}$](image)

Fig. S5. Job’s plot of HBS for Zn$^{2+}$ (where ΔF indicates the change of emission intensity at 478 nm)

6. Determination of detection limit:

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of HBS without the ion (Zn$^{2+}$) was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit of HBS for Zn$^{2+}$ was determined from the following equation:

$$DL = K \times S_{b1}/S$$

Where $K = 2$ or 3 (we take 3 in this case); S_{b1} is the standard deviation of the blank solution; S is the slope of the calibration curve.

Thus using the formula, we get the Detection Limit = 1.6×10^{-7} M i.e., HBS can detect Zn$^{2+}$ in this minimum concentration by fluorescence techniques.
Fig. S6: Linear response curve of HBS at 478 nm depending on the Zn$^{2+}$ concentration

7. Determination of association constant:

Binding constant was calculated according to the Benesi-Hildebrand equation. K_a was calculated following the equation stated below.

\[
1/(F - F_0) = 1/\{K_a(F_{\text{max}} - F_0) [M^{n+}]^x\} + 1/[F_{\text{max}} - F_0]
\]

Here F_0, F and F_{max} indicate the emission in absence of, at intermediate and at infinite concentration of metal ion respectively.

Plot of $1/[F-F_0]$ vs. $1/[Zn^{2+}]$ gives a straight line indicating 1:1 complexation between HBS and Zn$^{2+}$ where K_a is found to be 1.6×10^5 M$^{-1}$ for HBS.

Fig. S7: Determination of association constant of HBS at 478 nm depending on the Zn$^{2+}$ concentration using Benesi-Hildebrand equation
8. Lifetime study:

Fig. S8. Lifetime decay plot of HBS and the HBS+Zn\(^{2+}\) complex

Table S1: Fluorescence lifetime data

<table>
<thead>
<tr>
<th>MeOH (solvent)</th>
<th>Quantum yield ((\varphi))</th>
<th>(\tau) (ns)</th>
<th>(k_r) ((10^8 \times s^{-1}))</th>
<th>(k_{nr}) ((10^8 \times s^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBS</td>
<td>0.155</td>
<td>1.73</td>
<td>0.90</td>
<td>4.88</td>
</tr>
<tr>
<td>HBS-Zn(^{2+})</td>
<td>0.167</td>
<td>0.82</td>
<td>2.04</td>
<td>10.16</td>
</tr>
</tbody>
</table>

\(^a\) Radiative rate constant \(K_r\) and total non radiative rate constant \(K_{nr}\) have been calculated using the equation \(\tau^{-1} = K_r + K_{nr}\) and \(K_r = \varphi \tau / \tau\)

9. Fluorescence study:
Fig. S9. Change in emission spectrum of HBS (10 µM) upon addition of Na\(^+\), K\(^+\), Ca\(^{2+}\), Mg\(^{2+}\), Mn\(^{2+}\), Fe\(^{3+}\), Cr\(^{3+}\), Al\(^{3+}\), Co\(^{2+}\), Ni\(^{2+}\), Cu\(^{2+}\), Cd\(^{2+}\) and Hg\(^{2+}\) (10 µM) in MeOH:H\(_2\)O (1:1, v/v, pH=7.2)

10. \(^1\)H NMR spectrum of HBS:

![Fig. S10: \(^1\)H NMR (300 MHz) spectra of HBS in DMSO-d\(_6\)](image)

11. \(^{13}\)C NMR spectrum of HBS:

![Fig. S11: \(^{13}\)C NMR (150 MHz) spectra of HBS in DMSO-d\(_6\)](image)
12. Mass spectrum (HRMS) of HBS:

![HRMS spectrum of HBS](image1)

Fig. S12: HRMS of the probe (HBS)

13. 1H NMR spectrum of HBB:

![NMR spectrum of HBB](image2)

Fig. S13: 1H NMR (300 MHz) spectra of HBB in DMSO-d$_6$
14. 13C NMR spectrum of HBB:

![13C NMR spectrum](image)

Fig. S14: 13C NMR (100 MHz) spectra of HBB in DMSO-d_6

15. Mass spectrum (HRMS) of HBB:

![Mass spectrum](image)

Fig. S15: HRMS of the analogous compound (HBB)

Calcd. for $C_{21}H_{16}N_3O_2S$ [M + H]$^+$
(m/z): 374.0963; found: 374.1011

Calcd. for $C_{21}H_{15}N_3NaO_2S$ [M + Na]$^+$
(m/z): 396.0783; found: 396.0781
16. 1H NMR titration of HBS with Zn$^{2+}$:

![NMR spectra](image1)

Fig. S16: NMR titration spectra of HBS in presence of Zn$^{2+}$ in DMSO-d$_6$

17. Mass spectrum (HRMS) of HBS-Zn$^{2+}$

![HRMS spectrum](image2)

Fig. S17: HRMS of the HBS-Zn$^{2+}$

Calcd. for C$_{21}$H$_{12}$ClN$_3$NaO$_3$S2Zn

$[M + Zn^{2+} + Cl^- + Na^+ - H]^{+}$ (m/z): 507.9477; found: 507.2065
18. Computational Study

Fig. S18. Optimized structure of HBS by DFT/B3LYP/6-31+G (d)

Fig. S19. Optimized structure of HBS-Zn\(^{2+}\) complex by DFT/B3LYP/6-31+G (d)/LanL2DZ method

Table S2: Vertical electronic excitations of HBS calculated by TDDFT/CPCM method

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Osc. strength (f)</th>
<th>Transition</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3026</td>
<td>375.42</td>
<td>0.6090</td>
<td>(94%) HOMO→LUMO</td>
<td>Lig((\pi))→Lig((\pi^*))</td>
</tr>
<tr>
<td>3.8026</td>
<td>326.05</td>
<td>0.3175</td>
<td>(88%) HOMO-1→LUMO</td>
<td>Lig((\pi))→Lig((\pi^*))</td>
</tr>
<tr>
<td>3.9789</td>
<td>311.60</td>
<td>0.6037</td>
<td>(77%) HOMO→LUMO+1</td>
<td>Lig((\pi))→Lig((\pi^*))</td>
</tr>
<tr>
<td>4.1309</td>
<td>300.14</td>
<td>0.0314</td>
<td>(60%) HOMO-2→LUMO</td>
<td>Lig((\pi))→Lig((\pi^*))</td>
</tr>
</tbody>
</table>
Table S3: Vertical electronic excitations of Zn$^{2+}$ complex of HBS calculated by TDDFT/CPCM method

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Wavelength (nm)</th>
<th>Osc. strength (f)</th>
<th>Transition</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0519</td>
<td>406.25</td>
<td>0.3637</td>
<td>(97%) HOMO→LUMO</td>
<td>Lig(\pi)→Lig(\pi^*)</td>
</tr>
<tr>
<td>3.6455</td>
<td>340.10</td>
<td>0.1018</td>
<td>(96%) HOMO→LUMO+1</td>
<td>Lig(\pi)→Lig(\pi^*)</td>
</tr>
<tr>
<td>3.8225</td>
<td>324.35</td>
<td>0.2874</td>
<td>(47%) HOMO-1→LUMO</td>
<td>Lig(\pi)→Lig(\pi^*)</td>
</tr>
<tr>
<td>3.8324</td>
<td>323.52</td>
<td>0.0608</td>
<td>(47%) HOMO-2→LUMO</td>
<td>Lig(\pi)→Lig(\pi^*)</td>
</tr>
<tr>
<td>4.3684</td>
<td>283.82</td>
<td>0.1617</td>
<td>(45%) HOMO-1→LUMO+1</td>
<td>Lig(\pi)→Lig(\pi^*)</td>
</tr>
</tbody>
</table>

Table S4. Energy and compositions of some selected molecular orbitals of HBS-Zn$^{2+}$ complex

<table>
<thead>
<tr>
<th>MO</th>
<th>Energy</th>
<th>% of composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HBS</td>
</tr>
<tr>
<td>LUMO+5</td>
<td>0.12</td>
<td>98</td>
</tr>
<tr>
<td>LUMO+4</td>
<td>-0</td>
<td>21</td>
</tr>
<tr>
<td>LUMO+3</td>
<td>-0.6</td>
<td>100</td>
</tr>
<tr>
<td>LUMO+2</td>
<td>-1.09</td>
<td>100</td>
</tr>
<tr>
<td>LUMO+1</td>
<td>-1.91</td>
<td>99</td>
</tr>
<tr>
<td>LUMO</td>
<td>-2.42</td>
<td>99</td>
</tr>
<tr>
<td>HOMO</td>
<td>-5.67</td>
<td>99</td>
</tr>
<tr>
<td>HOMO-1</td>
<td>-6.1</td>
<td>100</td>
</tr>
<tr>
<td>HOMO-2</td>
<td>-6.35</td>
<td>98</td>
</tr>
<tr>
<td>HOMO-3</td>
<td>-6.81</td>
<td>92</td>
</tr>
<tr>
<td>HOMO-4</td>
<td>-6.97</td>
<td>62</td>
</tr>
<tr>
<td>HOMO-5</td>
<td>-7.01</td>
<td>45</td>
</tr>
</tbody>
</table>
Fig. S20: Contour plot of some selected molecular orbitals of HBS
19. Cell-bio imaging

MTT assay

Human breast cancer cell lines MCF-7 were evaluated for cytotoxicity with HBS and HBS-Zn$^{2+}$ complex by the following protocol as described by Ray et.al.13 MCF-7 cell lines were obtained from National centre for cell science, Pune, India and maintained in Minimum Essential Media Earle’s (MEM) (Gibco, life technologies) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco, life technologies, USA) and stored at 37°C in a humidified incubator under 5% CO$_2$ atmosphere. Cells were seeded in 96-well plates at a density of 5×10^3 cells per well and cultured in CO$_2$ incubator for 24 h. The cells were separately treated with increasing doses of HBS and HBS-Zn$^{2+}$ complex concentrations (5, 10, 20, 25, 30, 50, 75, 100, 125) μM, along with control. Zn$^{2+}$ was treated in aqueous medium while the receptor HBS was dissolved in DMSO but final concentration of DMSO was maintained below 1%. After 24 h, methyl tetrazolium dye (MTT) (5 mg/ml) solution was added to each well (10 μl/well). The plates were incubated in the dark at 37°C for 2 h. 100 μL of DMSO was added to each well and allowed to stand for 1 h in vortex shaker. Cell viability determination was
studied by recording absorbance at 570 nm for each well using a microplate reader (Tecan, infinite M200). Untreated cells were served as 100% viable.

![Graph showing % Survivability vs Concentration in µM for HBS, Zn²⁺, and HBS-Zn²⁺](image)

Fig. S22. MTT assay of HBS and HBS-Zn²⁺ complex on MCF-7 cell lines

20. Determination of fluorescence quantum yield

The luminescence quantum yield was determined using coumarin 153 as reference dye. The compounds and the reference dye were excited at the same wavelength, maintaining nearly equal absorbance (~0.1), and the emission spectra were recorded. The area of the emission spectrum was integrated using the software available in the instrument and the quantum yield is calculated according to the following equation:

$$\phi_S/\phi_R = [A_S / A_R] \times [(Abs)_R/(Abs)_S] \times \left[\frac{n_S^2}{n_R^2}\right]$$

Here, ϕ_S and ϕ_R are the luminescence quantum yields of the sample and reference, respectively. A_S and A_R are the area under the emission spectra of the sample and the reference respectively, $(Abs)_S$ and $(Abs)_R$ are the respective optical densities of the sample and the reference solution at the wavelength of excitation, and n_S and n_R are the values of refractive index for the respective solvent used for the sample and reference.

We calculated the quantum yields of HBS and HBS-Zn²⁺ using the above mentioned equation; the values are 0.155 and 0.167 respectively.