Supporting Information

3D water-stable europium metal organic frameworks as a multi-responsive luminescent sensor for high-efficiency detection of $Cr_2O_7^{2-}$, MnO_4^{-} , Cr^{3+} ions and SDBS in aqueous solution

Shuai-Liang Yang ^a, Yue-Ying Yuan ^a, Pei-Pei Sun ^a, Tian Lin ^a, Chen-Xi Zhang ^{a,b*}, Qing-Lun Wang ^{c,d}
^a College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
^b Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457, P. R. China
^c Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
^d College of Chemistry, Nankai University, Tianjin 300071, P. R. China

^{*} Corresponding author. Email: <u>zcx@tust.edu.cn</u>

Scheme S1. Structure of bpydbH₂ ligand.

Fig. S1. The 3D framework of 1 contains two types irregular 1D channel along a direction and Eu^{3+} is represent as polyhedral.

Fig. S2. TG curves for 1.

Fig. S3. The N_2 sorption isotherm of 1 at 77 K (solid symbol: adsorption, open symbol: desorption); (insert) The aperture distribution curve of 1.

Fig. S4. The excitation and emission spectra of free $bpydbH_2$ ligand; (inset) image of ligand under irradiation of 365 nm UV light.

Fig. S5. The excitation spectrum of $1(\lambda_{em} = 617 \text{ nm})$.

Fig. S6. The I_0/I versus the concentration of $Cr_2O_7^{2-1}$ ion for 1 (from 0 to 1 mM).

Fig. S7. Luminescence decay of **1** measured at the excitation/emission maxima, which can be fitted with two-exponential decay I (t) = A + B₁e^{-t/\tau 1} + B₂e^{-t/\tau 2}, where A is a constant, and B₁ and B₂ are pre-exponential factors; τ_1 and τ_2 are fitted time constants of the decay. The fluorescence lifetime was calculated according to $\tau = (B_1\tau_1^{2+}B_2\tau_2^{2})/(B_1\tau_1^{+}B_2\tau_2)$.

Fig. S8. Fit result of the time-resolved fluorescence decay traces of $1@Cr_2O_7^{2-}$.

Fig. S9. Comparision of the luminescence intensity of 1 in the presence of mixed anions in 10^{-3} M.

Fig. S10. The I_0/I versus the concentration of MnO₄⁻ ion for **1** (from 0 to 1 mM).

Fig. S11. Fit result of the time-resolved fluorescence decay traces of $1@MnO_4^-$.

Fig. S12. Comparision of the luminescence intensity of 1 in the presence of mixed anions in 10^{-3} M.

Fig. S13. Luminescent intensity at 617 nm of 1 after four recycles (a, b, c, d) in MnO_4^- solutions (10⁻³ M).

Fig. S14. The PXRD patterns of 1 after soaking in $Cr_2O_7^{2-}$ or MnO_4^{-} ions aqueous solution.

Fig. S15. UV-vis spectra of different anions and excitation spectra of 1 in aqueous solution.

Fig. S16. Fit result of the time-resolved fluorescence decay traces of 1@Cr³⁺.

Fig. S17. Luminescent intensity at 617 nm of 1 after four recycles in Cr^{3+} solutions (10⁻² M).

Fig. S18. The PXRD patterns of 1 after soaking in Cr^{3+} ions aqueous solution.

Fig. S19. UV-vis spectra of different metal ions and excitation spectra of 1 in aqueous solution.

Fig. S20. (a) XPS for 1 and 1@Cr³⁺; (b) N 1s XPS for 1 and 1@Cr³⁺.

Fig. S21. The I_0/I versus the concentration of SDBS for 1 (from 0 to 10 mM).

Fig. S22. Fit result of the time-resolved fluorescence decay traces of 1@SDBS.

Fig. S23. Luminescent intensity at 617 nm of 1 after four recycles in SDBS solutions (10^{-2} M) .

Fig. S24. The PXRD patterns of 1 after soaking in SDBS aqueous solution.

Fig. S25. UV-vis spectra of different surfactant and excitation spectra of **1** in aqueous solution.

Ln-MOF-based	Analyte	Quenching Constant	Detection	Slovent	Ref
Fluorescent Materials		K_{sv} (M ⁻¹)	Limits		
{[Eu ₃ (bpydb) ₃ (HCOO)(OH) ₂	$Cr_2O_7^{2-}/Cr^{3+}$	$1.33 \times 10^{4}/2.24 \times 10^{3}$	0.5uM/1uM	water	This
$(DMF)]$ ·3DMF·2H ₂ O}n					work
$\{[Eu_2L_{1.5}(H_2O)_2EtOH]\cdot$	$Cr_{2}O_{7}^{2}$	1.53×10 ³	10uM	DMF	[1]
DMF _n					
[Eu(Hpzbc) ₂ (NO ₃)]·H ₂ O	$Cr_{2}O_{7}^{2-}$	—	22uM	ethanol	[2]
$[Eu_2(tpbpc)_4 \cdot CO_3 \cdot 4H_2O] \cdot$	$Cr_2O_7^{2-}/Cr^{3+}$	$1.04 \times 10^4 / 5.14 \times 10^2$	4.9uM/70uM	water	[3]
DMF·Solvent					
$[Eu(L)(HCOO)(H_2O)]_n$	$Cr_2O_7^{2-}/Cr^{3+}$	2.76×10 ³ /1.36×10 ³	10uM/15uM	water	[4]
$[Tb(L)(HCOO)(H_2O)]_n$	$Cr_2O_7^{2-}/Cr^{3+}$	$2.13 \times 10^{3} / 1.00 \times 10^{3}$	2.1uM/1.9uM	water	[4]
$[(CH_3)_2NH_2]_2[Eu_6(\mu_3-OH)_8$	$Cr_{2}O_{7}^{2}$	7.32×10^{3}		DMF	[5]
$(BDC-NH_2)_6(H_2O)_6]$					
$[(CH_3)_2NH_2]_2[Eu_6(\mu_3-OH)_8$	$Cr_{2}O_{7}^{2}$	9.69×10 ³		DMF	[5]
$(BDC-F)_6(H_2O)_6]$					
$[(CH_3)_2NH_2]_2[Eu_6(\mu_3-OH)_8$	$Cr_{2}O_{7}^{2}$	1.12×10^{4}		DMF	[5]
$(1, 4-NDC)_6(H_2O)_6]$					
$[Eu(ipbp)_2(H_2O)_3] \cdot Br \cdot 6H_2O$	$Cr_{2}O_{7}^{2}$	8.98×10 ³	5.16uM	DMF/	[6]
				H_2O	
${[Tb(TATAB)(H_2O)_2] \cdot NMP \cdot}$	$Cr_2O_7^{2-}$	1.11×10^{4}		water	[7]
H_2O_n					

Table S1 Performance comparison between various Ln-MOFs fluorescent sensors for $Cr_2O_7^{2-}$ and Cr^{3+} ions.

L=5,5-((carbonyl bis(azanediyl)) diisophthalic acid [1];

H₂pzbc=3-(1H-Pyrazol-3-yl) benzoic acid [2];

 $\begin{aligned} Htpbpc=4'-[4,2';6',4']-terpyridin-4'-yl-biphenyl-4-carboxylicacid[3]; H_2L=5-((2'-cyano-[1,1'-biphenyl]-4-yl)methoxy) isophthalic acid [4]; H_2ipbpBr=1-(3,5-dicarboxyphenyl)-4,4'-bipyridinium bromide[6]; H_3TATAB=4,4',4''-s-triazine-1,3,5-triyltri-$ *m* $-aminobenzoic acid [7]. \end{aligned}$

References

[1] W. Liu, X. Huang, C. Xu, C. Chen, L. Yang, W. Dou, W. Chen and H. Yang, W. Liu, *Chem. Eur. J.*, 2016, **22**, 18769-18776.

[2] G. P. Li, G. Liu, Y.Z. Li, L. Hou, Y.Y. Wang and Z.H. Zhu, *Inorg. Chem.*, 2016, **55**, 3952-3959.

[3] J. J. Liu, G. F. Ji, J. N. Xiao and Z. L. Liu, *Inorg. Chem.*, 2017, **56**, 4197-4205.

[4] Z. Sun, M. Yang, Y. Ma and L. C. Li, *Cryst. Growth. Des.*, 2017, **17**, 4326-4335.

[5] P. D. Yi, H. L. Huang, Y. G. Peng, D. H. Liu and C. L. Zhong, *RSC Adv.*, 2016, 6, 111934-111941.

[6] C. H. Zhang, L. B. Sun, Y. Yan, H. Z. Shi, B. L. Wang, Z. Q. Liang and J. Y. Li, *J. Mater. Chem. C*, 2017, **5**, 8999-9004.

[7] G. X. Wen, M. L. Han, X. Q. Wu, Y. P. Wu, W. W. Dong, J. Zhao, D. S. Li and L. F. Ma, *Dalton Trans.*, 2016, **45**, 15492-15499.