Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018

Supplementary Material

Acid-base behaviour and binding to double stranded DNA/RNA of benzo[g]phthalazine-based ligands

E. Carbonell, A. Martinez-Camarena, C. Galiana-Rosello, M. Inclan, R. Tejero, M. J. R. Yunta, P. Navarro, F. Gomez-Contreras, A. M. Sanz, L. Campayo, M. C. Cano, E. García-España and J. González-García.

Supplementary Material include:

 Table S1.- Binding constants and spectroscopic properties of complexes calculated from UV-Vis and fluorimetric titrations of compounds with mismatched and fully matched duplex DNAs.

Figure S1.- UV-Vis spectra changes with the pH of compound 1 and 2.

Figure S2.- UV-Vis spectra changes with the pH of precursor phthalazine 3 and emission maxima at 448 and 488 nm respectively with the pH.

Figure S3.- Emission fluorescence spectra changes with the pH of phthalazine 3 and emission maxima at 448 and 488 nm respectively with the pH.

Figure S4. UV-Vis titration of 1 at pH 7 with poly dA-poly dT. Inset: fitting of absorbance intensity.

Figure S5. UV-Vis titration of 1 at pH 7 with poly rA-poly rU. Inset: fitting of absorbance intensity.

Figure S6. UV-Vis titration of 1 at pH 7 with poly dG-poly dC. Inset: fitting of absorbance intensity.

Figure S7. UV-Vis titration of 2 at pH 7 with poly dA-poly dT. Inset: fitting of absorbance intensity.

Figure S8. UV-Vis titration of 2 at pH 7 with poly rA-poly rU. Inset: fitting of absorbance intensity.

Figure S9. UV-Vis titration of 2 at pH 7 with poly dG-poly dC. Inset: fitting of absorbance intensity.

Figure S10. Fluorimetric titration of 1 at pH 7 with poly dA-poly dT. Inset: fitting of fluorescence emission intensity.

Figure S11. Fluorimetric titration of 1 at pH 7 with poly dG-poly dC. Inset: fitting of fluorescence emission intensity.

Figure S12. Fluorimetric titration of 1 at pH 7 with poly rA-poly rU. Inset: fitting of fluorescence emission intensity.

Figure S13. Fluorimetric titration of 2 at pH 7 with poly dA-poly dT. Inset: fitting of fluorescence emission intensity.

Figure S14. Fluorimetric titration of 2 at pH 7 with poly dG-poly dC. Inset: fitting of fluorescence emission intensity.

Figure S15. Fluorimetric titration of 2 at pH 7 with poly rA-poly rU. Inset: fitting of fluorescence emission intensity.

Figure S16. UV-Vis titration of 1 at pH 6 with *duplex TA*. Inset: fitting of absorbance intensity.

Figure S17. UV-Vis titration of 1 at pH 6 with duplex TC. Inset: fitting of absorbance intensity.

Figure S18. UV-Vis titration of 1 at pH 6 with *duplex TG*. Inset: fitting of absorbance intensity.

Figure S19. UV-Vis titration of 1 at pH 6 with *duplex TT*. Inset: fitting of absorbance intensity.

Figure S20. UV-Vis titration of 2 at pH 6 with *duplex TA*. Inset: fitting of absorbance intensity.

Figure S21. UV-Vis titration of 2 at pH 6 with *duplex TC*. Inset: fitting of absorbance intensity.

Figure S22. UV-Vis titration of 2 at pH 6 with *duplex TG*. Inset: fitting of absorbance intensity.

Figure S23. UV-Vis titration of 2 at pH 6 with *duplex TT*. Inset: fitting of absorbance intensity.

Supplementary Material

Figure S24. Fluorimetric titration of 1 at pH 6 with *duplex TA*. Inset: fitting of fluorescence emission intensity.
Figure S25. Fluorimetric titration of 1 at pH 6 with *duplex TC*. Inset: fitting of fluorescence emission intensity.
Figure S26. Fluorimetric titration of 1 at pH 6 with *duplex TG*. Inset: fitting of fluorescence emission intensity.
Figure S27. Fluorimetric titration of 1 at pH 6 with *duplex TT*. Inset: fitting of fluorescence emission intensity.
Figure S28. Fluorimetric titration of 2 at pH 6 with *duplex TA*. Inset: fitting of fluorescence emission intensity.
Figure S29. Fluorimetric titration of 2 at pH 6 with *duplex TC*. Inset: fitting of fluorescence emission intensity.
Figure S29. Fluorimetric titration of 2 at pH 6 with *duplex TC*. Inset: fitting of fluorescence emission intensity.
Figure S30. Fluorimetric titration of 2 at pH 6 with *duplex TG*. Inset: fitting of fluorescence emission intensity.

Figure S31. Fluorimetric titration of 2 at pH 6 with *duplex TT*. Inset: fitting of fluorescence emission intensity.

Figure S32. Minimum energy conformers calculated for the interaction of 2 (A) and 3 (B) with double stranded DNA.

Supplementary Material

Table S1.- Binding constants (K_a) and spectroscopic properties of complexes calculated from UV-Vis and fluorimetric titrations of compounds with mismatched and fully matched duplexes (sodium cacodylate 10 mM, NaCl 100 mM, pH 6.0).

	Oligonucleotide	log K _a (UV Vis)	log K _a (Fluorescence)	a
1	duplex TA	5.5(2)	5.9(2)	0.39
	duplex TC	5.2(3)	5.7(1)	0.41
	duplex TG	5.0(1)	5.9(1)	0.52
	duplex TT	5.2(1)	5.7(1)	0.41
2	duplex TA	4.9(3)	6.1(1)	0.37
	duplex TC	5.4(1)	5.5(2)	0.48
	duplex TG	5.0(2)	5.7(3)	0.36
	duplex TT	5.1(1)	6.2(2)	0.39

^aEmission change; I = I(complex)/I(ligand).

Figure S1.- UV-Vis spectra changes with the pH of compound **1** (A) and **2** (B). Blue line is the most basic UV-Vis spectra ($pH \sim 11$) and red line is the most acidic UV-Vis one ($pH \sim 2$)

Figure S2.- UV-Vis spectra changes with the pH of phthalazine **3** (A) and absorption maxima at 239 nm with the pH (B). Blue line is the most basic UV-Vis spectra ($pH \sim 11$) and red line is the most acidic UV-Vis one ($pH \sim 2$)

Figure S3.- Emission fluorescence spectra changes with the pH of phthalazine **3** (A) and emission maxima at 448 and 488 nm respectively with the pH (B). Blue line is the most basic UV-Vis spectra (pH \sim 11) and red line is the most acidic UV-Vis one (pH \sim 2)

Figure S4. UV-Vis titration of 1 ($c = 5 \times 10^{-6}$ M) at pH 7 with poly dA-poly dT. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S5. UV-Vis titration of 1 ($c = 5 \times 10^{-6}$ M) at pH 7 with poly rA-poly rU. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S6. UV-Vis titration of 1 ($c = 5 \times 10^{-6}$ M) at pH 7 with poly dG-poly dC. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S7. UV-Vis titration of **2** ($c = 5 \times 10^{-6}$ M) at pH 7 with poly dA-poly dT. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S8. UV-Vis titration of **2** ($c = 5 \times 10^{-6}$ M) at pH 7 with poly rA-poly rU. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S9. UV-Vis titration of **2** ($c = 5 \times 10^{-6}$ M) at pH 7 with poly dG-poly dC. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S10. Fluorimetric titration of 1 ($c = 5 \times 10^{-6}$ M, $\lambda_{exc}=380$ nm) at pH 7 with poly dA-poly dT. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S11. Fluorimetric titration of 1 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 7 with poly dG-poly dC. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S12. Fluorimetric titration of 1 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 7 with poly rA-poly rU. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S13. Fluorimetric titration of **2** ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 7 with poly dA-poly dT. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S14. Fluorimetric titration of **2** ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 7 with poly dG-poly dC. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S15. Fluorimetric titration of 2 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 7 with poly rA-poly rU. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer, I = 0.05 M.

Figure S16. UV-Vis titration of 1 ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TA*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S17. UV-Vis titration of 1 ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TC*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S18. UV-Vis titration of 1 ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TG*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S19. UV-Vis titration of 1 ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TT*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S20. UV-Vis titration of **2** ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TA*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S21. UV-Vis titration of **2** ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TC*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S22. UV-Vis titration of **2** ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TG*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S23. UV-Vis titration of **2** ($c = 5 \times 10^{-6}$ M) at pH 6 with *duplex TT*. Inset: fitting of absorbance intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S24. Fluorimetric titration of 1 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 6 with *duplex TA*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S25. Fluorimetric titration of 1 ($c = 5 \times 10^{-6}$ M, $\lambda_{exc}=380$ nm) at pH 6 with *duplex TC*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S26. Fluorimetric titration of 1 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 6 with *duplex TG*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S27. Fluorimetric titration of 1 ($c = 5 \times 10^{-6}$ M, $\lambda_{exc}=380$ nm) at pH 6 with *duplex TT*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S28. Fluorimetric titration of 2 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 6 with *duplex TA*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S29. Fluorimetric titration of 2 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 6 with *duplex TC*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S30. Fluorimetric titration of 2 ($c = 5 \times 10^{-6}$ M, λ_{exc} =380 nm) at pH 6 with *duplex TG*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S31. Fluorimetric titration of 2 ($c = 5 \times 10^{-6}$ M, $\lambda_{exc}=380$ nm) at pH 6 with *duplex TT*. Inset: fitting of fluorescence emission intensity. Performed in sodium cacodylate buffer (NaCacodylate 10 mM, NaCl 100 mM).

Figure S32. Minimum energy conformers calculated for the interaction of 2 (A) and 3 (B) with double stranded DNA.