Supporting Information

High-quality vanadium-doped MoS$_2$ ultrathin nanosheets as efficient ORR catalyst

Tianyu Hea, Ling Xua, Ying Zhangb, Hao Huangb and Huan Jiaoa

a Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University.

b Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China

1. Figure S1. Nitrogen absorption measurements for V-MoS$_2$-10%.

2. Figure S2. CVs of MoS$_2$ samples and commercial 20% Pt/C catalyst in N$_2$-(black) and O$_2$-(red) saturated electrolyte.

3. Figure S3. RDE LSVs and Koutecky–Levich plots of MoS$_2$ ultrathin nanosheets in O$_2$-saturated 0.1 M KOH.

4. Figure S4. Chronoamperometric response.
1. Figure S1. Nitrogen absorption measurements for V-MoS$_2$-10%.
2. Figure S2. CVs of various MoS$_2$ samples in N$_2$-(black) and O$_2$- (red) saturated electrolyte.
3. Figure S3. RDE LSVs and Koutecky–Levich plots of MoS$_2$ ultrathin nanosheets in O$_2$-saturated 0.1 M KOH.
4. Figure S4. Chronoamperometric response