Supporting Information

Crystal structure, spectroscopic, DNA binding studies and DFT calculations of a Zn(II) complex containing pyridoxal appended Schiff base and its application in Bioimaging of Zn(II)

Satyajit Mondal, a Moumita Chakraborty, a Antu Mondal, a Bholanath Pakhira, a Subhra Kanti Mukhopadhyay, b Avishek Banik, b Swaraj Sengupta, c Shyamal Kumar Chattopadhyay* a

a Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India. E mail: shch20@hotmail.com

b Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, India

c Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India

CONTENTS

1. Figure S1: Mass spectrum of Complex 1.
2. Figure S2: 1H NMR spectrum of Complex 1.
3. Figure S3: 13C spectrum of Complex 1.
4. Table S1: Analysis of Hydrogen Bonds
5. Figure S4: IR spectra of the ligand Complex 1.
6. Figure S5: Job’s plot of complex formation between ligand (host) and the Zn(II). Xh is the the ligand mole fraction.
7. Figure S6: Emission spectra of complex 1 in 9: 1 methanol : water buffer (pH 7.4, \(\lambda_{ex} \) 390 nm).
8. Figure S7: Red bars: Fluorescence Changes of HL (1 \(\times \) 10\(^{-5}\) M) in the presence of 1 equiv of Zn\(^{2+}\) solution. Green bars: Enhanced emission upon the addition of different cations (3 equiv). All samples are prepared in 10 mM Tris-HCl buffer at pH 7.4 and excited at 385 nm.
9. Figure S8: Association constant and Detection limit calculation Ligand with Zn\(^{2+}\)
10. Figure S9. Fluorescence Microscopic photographs of (a) Candida albicans cells treated with ligand, (b) Candida albicans cells treated with Zn(II), (c) Candida albicans cells treated with Zn(II) + followed by the ligand, (d) Candida albicans cells treated with Zn(II) followed by the ligand and then phosphate.
11. Table S2: DFT results of Complex 1.
12. Table S3: TD-DFT calculations of ligand and Complex 1.
Figure S1: Mass spectrum of Complex 1.

Figure S2: 1H NMR spectrum of Complex 1.
Figure S3: 13C NMR spectrum of Complex 1.

Table S2: Analysis of Hydrogen Bonds
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O2-H2A---N3<sup>a</sup></td>
<td>0.82</td>
<td>2.01</td>
<td>2.787(7)</td>
<td>157</td>
</tr>
<tr>
<td>2</td>
<td>O2-H2B---N6<sup>b</sup></td>
<td>0.82(5)</td>
<td>1.90(5)</td>
<td>2.719(5)</td>
<td>176(6)</td>
</tr>
<tr>
<td>3</td>
<td>O3-H3---O1<sup>c</sup></td>
<td>0.82</td>
<td>2.08</td>
<td>2.883(4)</td>
<td>168</td>
</tr>
<tr>
<td>4</td>
<td>C3-H3---O1</td>
<td>0.96</td>
<td>2.34</td>
<td>2.797(5)</td>
<td>109</td>
</tr>
<tr>
<td>5</td>
<td>C8-H8---O3</td>
<td>0.93</td>
<td>2.54</td>
<td>3.151(5)</td>
<td>124</td>
</tr>
</tbody>
</table>

Symmetry operations: a= 1/2+x,1/2-y,-1/2+z; b= 3/2-x,1/2+y,3/2-z; c= 1-x,-y,1-z

Figure S4: IR Spectra of ligand and the complex 1.
Figure S5: Job’s plot of complex formation between ligand (host) and the Zn(II). X_h is the ligand mole fraction.

Figure S6: Emission spectra of complex 1 in 9:1 methanol:water buffer (pH 7.4, λ_ex 390 nm).
Figure S7: Red bars: Fluorescence Changes of HL (1 × 10⁻⁵ M) in the presence of 1 equiv of Zn(II) solution. Green bars: Enhanced emission upon the addition of different cations (3 equiv). All samples are prepared in 10 mMTris-HCl buffer at pH 7.4 and excited at 385 nm.

Calculation of Binding constant and detection limit for Ligand with Zn(II)complex:

The binding constant value of Zn(II) with ligand has been determined from the emission intensity data following the modified Benesi–Hildebrand equation, 1/ΔI = 1/ΔI_{max} + (1/K[C])(1/ΔI_{max}). Here ΔI = I−I_{min} and ΔI_{max} = I_{max}−I_{min}, where I_{min}, I, and I_{max} are the emission intensities of ligand considered in the absence of Zn(II), at an intermediate Zn(II) concentration, and at a concentration of complete saturation where K is the binding constant and [C] is the Zn(II) concentration respectively. From the plot of [1 / (I_{min}−I)] against [C]⁻¹ for ligand, the value of K has been determined from the slope. As the plot of 1/ (I−I_{min}) vs 1/[C] gives a straight line, indicates the 1:1 complexation of the sensor with Zn(II). The association constant (K_a) as determined by fluorescence titration method for the ligand with Zn(II) is found to be 1.8 × 10⁵ M⁻¹.

Calculation of the detection limit:

The detection limit DL of Ligand for Zn(II) was determined from the following equation:
DL = K* Sb1/S Where K = 2 or 3 (we take 2 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

For Ligand with Zn(II):

From the Intensity vs. Zn(II) graph, we get slope = 4.25327E11, and Sb1 value is 62770.41679.

Thus using the formula, we get the Detection Limit = \(2.95 \times 10^{-7}\) M

<table>
<thead>
<tr>
<th>Y = A + B * X</th>
<th>Y = A + B * X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adj R-Square</td>
<td>0.99859</td>
</tr>
<tr>
<td>Value</td>
<td>Standard error</td>
</tr>
<tr>
<td>Value</td>
<td>Standard error</td>
</tr>
<tr>
<td>A</td>
<td>Intercept</td>
</tr>
<tr>
<td>B</td>
<td>Slope</td>
</tr>
<tr>
<td>A</td>
<td>Intercept</td>
</tr>
<tr>
<td>B</td>
<td>Slope</td>
</tr>
</tbody>
</table>

Figure S8: Association constant and Detection limit calculation Ligand with Zn\(^{2+}\).
Figure S9: Fluorescence Microscopic photographs of (a) *Candida albicans* cells treated with ligand, (b) *Candida albicans* cells treated with Zn(II) + followed by the ligand.

Table S2: DFT results of Complex 1.

Complex 1 (optimized in Gas phase)

<table>
<thead>
<tr>
<th>orbitals</th>
<th>HOMO-3</th>
<th>HOMO-2</th>
<th>HOMO-1</th>
<th>HOMO</th>
<th>LUMO</th>
<th>LUMO+1</th>
<th>LUMO+2</th>
<th>LUMO+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy(eV)</td>
<td>-6.27</td>
<td>-6.02</td>
<td>-5.81</td>
<td>-5.67</td>
<td>-1.96</td>
<td>0.01</td>
<td>0.41</td>
<td>0.64</td>
</tr>
<tr>
<td>Zn contributions</td>
<td>0.84</td>
<td>3.42</td>
<td>2.03</td>
<td>1.05</td>
<td>0.44</td>
<td>0.52</td>
<td>60.67</td>
<td>38.63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom name and number</th>
<th>Bond distance (Å)</th>
<th>Mayer bond order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Zn 6N</td>
<td>2.105</td>
<td>0.33</td>
</tr>
<tr>
<td>1Zn 10O</td>
<td>2.02</td>
<td>0.378</td>
</tr>
<tr>
<td>1Zn 12O</td>
<td>2.233</td>
<td>0.28</td>
</tr>
<tr>
<td>1Zn 15N</td>
<td>2.014</td>
<td>0.497</td>
</tr>
<tr>
<td>1Zn 26N</td>
<td>2.308</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Complex I (optimized in MeOH):

<table>
<thead>
<tr>
<th>orbitals</th>
<th>HOMO-3</th>
<th>HOMO-2</th>
<th>HOMO-1</th>
<th>HOMO</th>
<th>LUMO</th>
<th>LUMO+1</th>
<th>LUMO+2</th>
<th>LUMO+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy(eV)</td>
<td>-6.26</td>
<td>-5.96</td>
<td>-5.9</td>
<td>-5.6</td>
<td>-1.76</td>
<td>0.18</td>
<td>0.29</td>
<td>0.7</td>
</tr>
<tr>
<td>Zn contributions</td>
<td>1.54</td>
<td>2.26</td>
<td>1.89</td>
<td>0.91</td>
<td>0.35</td>
<td>2.51</td>
<td>55.32</td>
<td>45.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom name and number</th>
<th>Bond distance (Å)</th>
<th>Mayer bond order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Zn 6N</td>
<td>2.136</td>
<td>0.326</td>
</tr>
<tr>
<td>1Zn 10O</td>
<td>2.032</td>
<td>0.402</td>
</tr>
<tr>
<td>1Zn 12O</td>
<td>2.155</td>
<td>0.294</td>
</tr>
<tr>
<td>1Zn 15N</td>
<td>2.053</td>
<td>0.424</td>
</tr>
<tr>
<td>1Zn 26N</td>
<td>2.289</td>
<td>0.216</td>
</tr>
</tbody>
</table>
Table S3: TD-DFT calculations of Ligand and Complex 1.

<table>
<thead>
<tr>
<th></th>
<th>Experimental wave length (nm)</th>
<th>Wave length obtained from TD-DFT (nm)</th>
<th>Oscillator strength (f)</th>
<th>Contributing orbital(s)</th>
<th>Percentage contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(II) Complex (opt in Gas) 385</td>
<td>395.166</td>
<td>0.0073</td>
<td>HOMO->LUMO</td>
<td>88%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>376.5172</td>
<td>0.0041</td>
<td>H-3->LUMO</td>
<td>78%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>368.4059</td>
<td>0.0337</td>
<td>H-2->LUMO</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H-1->LUMO</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>349.4556</td>
<td>0.0798</td>
<td>H-2->LUMO</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>277.0949</td>
<td>0.0061</td>
<td>H-5->LUMO</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>262.8994</td>
<td>0.0955</td>
<td>H-4->LUMO</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>Zn(II) Complex (opt in Methanol) 385</td>
<td>374.7418</td>
<td>0.0041</td>
<td>H-3->LUMO</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>362.4926</td>
<td>0.1614</td>
<td>HOMO->LUMO</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>343.235</td>
<td>0.0186</td>
<td>H-1->LUMO</td>
<td>94%</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>282.7894</td>
<td>0.0077</td>
<td>H-4->LUMO</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>264.8255</td>
<td>0.1046</td>
<td>H-5->LUMO</td>
<td>56%</td>
<td></td>
</tr>
</tbody>
</table>
Optimized Geometries

Complex in gas:

Zn 4.42419100 3.36639100 6.39485700
C 4.48753000 3.35745700 3.42044500
H 3.40876400 3.17836600 3.32268000
H 4.95690900 3.08734600 2.46395900
C 6.52257600 0.84470000 5.34617500
N 5.00286700 2.57390300 4.53261200
C 6.54501500 1.24457000 6.72039500
O 6.05588100 -1.05062300 2.94947300
H 5.57547600 -1.64983500 3.54315900
O 5.91667700 2.27401700 7.20691000
N 8.02209600 -0.61780100 7.23738500
O 4.81057100 4.43667600 8.31636700
H 5.42511600 3.72971500 8.59806800
C 7.27914600 -0.30623900 4.96198000
N 2.59929200 3.09996200 7.20511400
C 4.76271300 4.83887700 3.72831500
H 5.84766700 4.98338500 3.75483600
H 4.35718200 5.48325100 2.93315800
C 7.34795600 0.45063800 7.62247300
C 7.33651400 -0.80835100 3.53479500
H 7.81022000 -0.07246500 2.87367000
H 7.96218900 -1.71216100 3.50205100
C 5.83187000 1.60105200 4.32410700
<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>6.03843800</td>
<td>1.31970400</td>
<td>3.28872900</td>
</tr>
<tr>
<td>N</td>
<td>1.53917800</td>
<td>2.86908000</td>
<td>6.66362600</td>
</tr>
<tr>
<td>N</td>
<td>4.22384700</td>
<td>5.23501100</td>
<td>5.05475100</td>
</tr>
<tr>
<td>C</td>
<td>7.98005600</td>
<td>-0.98749500</td>
<td>5.93756300</td>
</tr>
<tr>
<td>H</td>
<td>8.55007700</td>
<td>-1.87907500</td>
<td>5.68123600</td>
</tr>
<tr>
<td>C</td>
<td>7.40710000</td>
<td>0.84570100</td>
<td>9.07353100</td>
</tr>
<tr>
<td>H</td>
<td>8.05147600</td>
<td>0.14781400</td>
<td>9.61229800</td>
</tr>
<tr>
<td>H</td>
<td>6.40788200</td>
<td>0.83795600</td>
<td>9.52684400</td>
</tr>
<tr>
<td>H</td>
<td>7.79933100</td>
<td>1.86383700</td>
<td>9.19185300</td>
</tr>
<tr>
<td>N</td>
<td>0.50992900</td>
<td>2.66253500</td>
<td>6.18059200</td>
</tr>
<tr>
<td>C</td>
<td>2.78296200</td>
<td>5.55949300</td>
<td>4.96820700</td>
</tr>
<tr>
<td>H</td>
<td>2.40012300</td>
<td>5.77002300</td>
<td>5.96880200</td>
</tr>
<tr>
<td>H</td>
<td>2.21997800</td>
<td>4.71211700</td>
<td>4.57003400</td>
</tr>
<tr>
<td>H</td>
<td>2.61465800</td>
<td>6.43496200</td>
<td>4.32178100</td>
</tr>
<tr>
<td>C</td>
<td>4.96054100</td>
<td>6.39296000</td>
<td>5.59868400</td>
</tr>
<tr>
<td>H</td>
<td>6.02038000</td>
<td>6.14203000</td>
<td>5.69672300</td>
</tr>
<tr>
<td>H</td>
<td>4.57389900</td>
<td>6.63184700</td>
<td>6.59176500</td>
</tr>
<tr>
<td>H</td>
<td>4.86142900</td>
<td>7.27728800</td>
<td>4.94980600</td>
</tr>
<tr>
<td>H</td>
<td>3.93189700</td>
<td>4.17218000</td>
<td>8.65563300</td>
</tr>
</tbody>
</table>

Complex in MeOH:

<table>
<thead>
<tr>
<th>Element</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>4.65531500</td>
<td>3.60062800</td>
<td>6.38216000</td>
</tr>
<tr>
<td>C</td>
<td>4.86386200</td>
<td>3.55267500</td>
<td>3.32776600</td>
</tr>
<tr>
<td>H</td>
<td>3.91261700</td>
<td>3.16150400</td>
<td>2.94186000</td>
</tr>
<tr>
<td>H</td>
<td>5.60219800</td>
<td>3.46284500</td>
<td>2.51925900</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>C</td>
<td>6.41868600</td>
<td>0.80361200</td>
<td>5.36754000</td>
</tr>
<tr>
<td>N</td>
<td>5.24919000</td>
<td>2.77289000</td>
<td>4.50501100</td>
</tr>
<tr>
<td>C</td>
<td>5.94166700</td>
<td>0.88456800</td>
<td>6.71512300</td>
</tr>
<tr>
<td>O</td>
<td>7.00085500</td>
<td>-0.58236200</td>
<td>2.59235900</td>
</tr>
<tr>
<td>H</td>
<td>6.42429000</td>
<td>-1.34253800</td>
<td>2.83650900</td>
</tr>
<tr>
<td>O</td>
<td>5.12652600</td>
<td>1.78571500</td>
<td>7.16457000</td>
</tr>
<tr>
<td>N</td>
<td>7.24138200</td>
<td>-1.09740400</td>
<td>7.28789900</td>
</tr>
<tr>
<td>O</td>
<td>6.36596800</td>
<td>4.78234200</td>
<td>6.94974000</td>
</tr>
<tr>
<td>H</td>
<td>7.25518800</td>
<td>4.38813100</td>
<td>6.80051100</td>
</tr>
<tr>
<td>C</td>
<td>7.32873400</td>
<td>-0.24504700</td>
<td>5.02687900</td>
</tr>
<tr>
<td>N</td>
<td>3.21751200</td>
<td>4.13589700</td>
<td>7.74694400</td>
</tr>
<tr>
<td>C</td>
<td>4.71517100</td>
<td>5.02470500</td>
<td>3.72148300</td>
</tr>
<tr>
<td>H</td>
<td>5.70345100</td>
<td>5.43083800</td>
<td>3.96455100</td>
</tr>
<tr>
<td>H</td>
<td>4.31205000</td>
<td>5.60284600</td>
<td>2.87460600</td>
</tr>
<tr>
<td>C</td>
<td>6.40408000</td>
<td>-0.13387700</td>
<td>7.63593000</td>
</tr>
<tr>
<td>C</td>
<td>7.94496400</td>
<td>-0.39710200</td>
<td>3.64917400</td>
</tr>
<tr>
<td>H</td>
<td>8.50768000</td>
<td>0.50362300</td>
<td>3.37529200</td>
</tr>
<tr>
<td>H</td>
<td>8.66186900</td>
<td>-1.23067500</td>
<td>3.67856100</td>
</tr>
<tr>
<td>C</td>
<td>5.98742500</td>
<td>1.72155900</td>
<td>4.33370300</td>
</tr>
<tr>
<td>H</td>
<td>6.29901900</td>
<td>1.46733900</td>
<td>3.31726000</td>
</tr>
<tr>
<td>N</td>
<td>2.97415100</td>
<td>3.64064900</td>
<td>8.81505400</td>
</tr>
<tr>
<td>N</td>
<td>3.86654900</td>
<td>5.18049300</td>
<td>4.92576200</td>
</tr>
<tr>
<td>C</td>
<td>7.69305200</td>
<td>-1.14514800</td>
<td>6.01006000</td>
</tr>
<tr>
<td>H</td>
<td>8.38841300</td>
<td>-1.95346900</td>
<td>5.78094000</td>
</tr>
<tr>
<td>C</td>
<td>5.91741100</td>
<td>-0.08254600</td>
<td>9.05925400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>6.33144500</td>
<td>-0.92335800</td>
<td>9.62177900</td>
</tr>
<tr>
<td>H</td>
<td>4.82228200</td>
<td>-0.11676500</td>
<td>9.10576500</td>
</tr>
<tr>
<td>H</td>
<td>6.21296100</td>
<td>0.85656000</td>
<td>9.54359900</td>
</tr>
<tr>
<td>N</td>
<td>2.69184800</td>
<td>3.20570800</td>
<td>9.85632100</td>
</tr>
<tr>
<td>C</td>
<td>2.44523700</td>
<td>4.90169700</td>
<td>4.63587100</td>
</tr>
<tr>
<td>H</td>
<td>1.87694800</td>
<td>4.98425200</td>
<td>5.56475600</td>
</tr>
<tr>
<td>H</td>
<td>2.32491500</td>
<td>3.88570100</td>
<td>4.25010900</td>
</tr>
<tr>
<td>H</td>
<td>2.04304100</td>
<td>5.60956300</td>
<td>3.89441800</td>
</tr>
<tr>
<td>C</td>
<td>3.99370800</td>
<td>6.54334900</td>
<td>5.47685600</td>
</tr>
<tr>
<td>H</td>
<td>5.04007200</td>
<td>6.74076700</td>
<td>5.72104800</td>
</tr>
<tr>
<td>H</td>
<td>3.39942700</td>
<td>6.60995200</td>
<td>6.39166600</td>
</tr>
<tr>
<td>H</td>
<td>3.63935600</td>
<td>7.30066100</td>
<td>4.76020700</td>
</tr>
<tr>
<td>H</td>
<td>6.36108700</td>
<td>5.05002200</td>
<td>7.89724100</td>
</tr>
</tbody>
</table>