Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material

Urea-assisted template-less synthesis of heavily nitrogen-doped hollow

carbon fibers for the anode material of lithium-ion batteries

Joonyoung Jang^{1,a}, Hee-eun Kim^{2,a}, Suhee Kang¹, Jin Ho Bang^{2,3,*} and Caroline Sunyong

Lee^{1,*}

1. Department of Materials and Chemical Engineering, Hanyang University,

Ansan, Gyeonggi-do 15588, Republic of Korea

(*E-mail: sunyonglee@hanyang.ac.kr)

2. Department of Bionano Technology, Hanyang University,

Ansan, Gyeonggi-do 15588, Republic of Korea

(*E-mail: jbang@hanyang.ac.kr)

3. Department of Chemical and Molecular Engineering, Hanyang University,

Ansan, Gyeonggi-do 15588, Republic of Korea

^a These authors contributed equally to this work.

Table S1. Microtextural parameters of conventional carbon nanofibers (CNF), hollow carbon nanofibers (HCF), and polyacrylonitrile nanofibers (PAN NFs) + urea (PU) heated at various temperatures .

	CNF	HCF	200℃	300°C	350℃	400°C
BET surface area [m ² g ⁻¹]	144.78	262.88	0.92	1.33	5.93	23.30
Total pore volume [cm ³ g ⁻¹]	0.083	0.32	0.010	0.013	0.042	0.23
Mesopore surface area [m ² g ⁻¹]	6.95	40.33	_	_	_	_
Mesopore volume [cm ³ g ⁻¹]	0.019	0.22	_	_	_	_
Micropore surface area [m ² g ⁻¹]	138.04	222.55	_	_	_	_
Micropore volume [cm ³ g ⁻¹]	0.063 (76%)	0.097 (31%)	_	_	_	_

Table S2. Relative absorbance of the methylene blue solution after 24 h exposure to conventional carbon nanofibers (CNFs) and hollow carbon nanofibers (HCFs).

	CNF	HCF
Relative absorbance (%)	72.3%	13.3%

 Table S3. Nitrogen content of conventional carbon nanofibers (CNFs) and hollow carbon nanofibers (HCFs)

Content (%)	Graphitic	Pyridinic	Pyrrolic	Molecular	Total Nitrogen
CNF	2.8	3.3	0.4	0.4	6.9
HCF	4.7	6.9	2.9	0.5	15.0

Table S4. Coulombic efficiency for the first three cycles at 0.1 C of (a) conventional carbon nanofiber (CNF)- and (b) hollow carbon nanofiber (HCF)-based anode

Coulombic Efficiency (%)	CNF	HCF
1 cycle	46.49	53.47
2 cycle	75.04	80.31
3 cycle	76.20	83.35

Figure S1. Ultraviolet-visible absorption spectra of the methylene blue (MB) solution before and after 24 h exposure to the conventional carbon nanofibers (CNF) and hollow carbon nanofibers (HCF) in the dark.

Figure S2. Nitrogen physisorption isotherms (insets: pore size distributions) of urea-coated polyacrylonitrile nanofibers heated at 200, 300, 350, and 400°C.

Figure S3. SEM image of thiourea coated PAN NFs under the same sintering condition of HCF fabrication.

Figure S4. Galvanostatic charge–discharge profiles of (a) conventional carbon nanofiber (CNF)- and (b) hollow carbon nanofiber (HCF)-based anodes.

Figure S5. Electrochemical performance of (a) conventional carbon nanofiber (CNF)- and (b) hollow carbon nanofiber (HCF)-based anodes without conductivity agent (Super P).

Figure S6. Galvanostatic charge–discharge profiles of (a) conventional carbon nanofiber (CNF)and (b) hollow carbon nanofiber (HCF)-based anodes without conductivity agent (Super P).

Figure S7. Galvanostatic charge–discharge profiles for the first three cycles at 0.1 C of (a) conventional carbon nanofiber (CNF)- and (b) hollow carbon nanofiber (HCF)-based anodes.