Fabrication of a three-dimensional visible-light-driven Ag-AgBr/TiO$_2$/graphene aerogel composite for enhanced photocatalytic destruction of organic dye and bacteria

Mingjing Zhang, a Yuexing Chen, a Bangjie Chen, a Yunsong Zhang, a Li Lin, a Xiaowen Han, a Ping Zou, a Guangtu Wang, a Jun Zeng, b Maojun Zhao* a

a College of Science, Sichuan Agricultural University, Yaan 625014, China
b Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science Engineering, Zigong 643002, China

*Corresponding author. E-mail address: Zhaomj_sicau@126.com

Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Fig. S1. Pore size distributions of TiO$_2$/GA and Ag-AgBr/TiO$_2$/GA.

Fig. S2. (a) High-resolution XPS spectra of the C 1s regions for the GO. (b) High-resolution XPS spectra of the Br 3d regions for the Ag-AgBr/TiO$_2$/GA. (c) Full-scale XPS survey spectrum for the Ag-AgBr/TiO$_2$/GA.
Fig. S3. Kinetic curves of the photocatalytic degradation for asprepared catalysts.

Fig. S4. XRD spectra of the Ag-AgBr/TiO$_2$/GA before and after the repeated photocatalytic reactions.

Fig. S5. The photocatalytic activity of the Ag-AgBr/TiO$_2$/GA towards MO degradation with different scavengers under visible light irradiation.