Supporting Information for

Copper-Catalyzed, Ceric Ammonium Nitrate Mediated N-Arylation of Amines

Uma Maheshwar Gonela, and Seth Y. Ablordeppey*

Division of Basic Pharmaceutical Sciences, Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, United States.

E-mail: seth.ablordeppey@famu.edu

Contents
1. General Procedures S2
2. 1H and 13C NMR Data S3
3. References S11
4. 1H and 13C NMR spectra S13
General method: Air and/or moisture sensitive reactions were carried out in anhydrous solvents under an atmosphere of argon in an oven or flame-dried glassware. All anhydrous solvents were distilled prior to use: THF, benzene, toluene, diethyl ether from Na and benzophenone; CH$_2$Cl$_2$, DMSO, DMF, hexane from CaH$_2$; MeOH, EtOH from Mg cake. Commercial reagents were used without purification. Column chromatography was carried out by using silica gel (100–200 mesh). 1H and 13C NMR chemical shifts are reported in ppm downfield from tetramethylsilane and coupling constants (J) are reported in hertz (Hz). The following abbreviations are used to designate signal multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

Experimental Section

General Procedure: To a 5 mL scintillation vial equipped with a Teflon-coated magnetic stir bar were loaded with aryl/alkyl amine (1 equiv, 1 mmol), aryl boronic acid (1.2 equiv, 1.2 mmol), CAN (1.5 equiv, 1.5 mmol) and Cu(OAc)$_2$ (0.1 equiv, 0.1 mmol) in toluene at room temperature and stirred for 12-24 h. Monitored by TLC until the starting materials were consumed. The solvent was removed by rotavapor to give a residue, from which the product was isolated by column chromatography on silica gel with MeOH/CH$_2$Cl$_2$ or EtOAc/petroleum ether (1% Et$_3$N as modifier) as eluents. Appropriate fractions were evaporated to afford the desired product.
Table 1:

3a: 4-Methoxy-N-phenylaniline
The compound data were in accordance with the literature.¹

\[
\begin{align*}
&\text{Ph} & \text{N} & \text{OMe} \\
&\text{H} & & \\
\end{align*}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.25 (dd, \(J = 10.2, 5.3\) Hz, 2H), 7.10 (s, 2H), 7.01 – 6.72 (m, 5H), 5.30 (s, 1H), 3.84 (s, 3H).
\(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 155.3, 145.1, 135.7, 129.2, 122.1, 119.6, 115.6, 114.6, 55.5.

4a: 4-Chloro-N-phenylaniline
The compound data were in accordance with the literature.¹

\[
\begin{align*}
&\text{Ph} & \text{N} & \text{Cl} \\
&\text{H} & & \\
\end{align*}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.38 – 7.16 (m, 4H), 7.12 – 6.92 (m, 5H), 5.68 (s, 1H).
\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 142.6, 141.8, 129.4, 129.4, 129.3, 125.5, 121.5, 118.8, 118.1.

4b: N-phenyl-4-(trifluoromethyl)aniline
The compound data were in accordance with the literature.²

\[
\begin{align*}
&\text{Ph} & \text{N} & \text{CF}_3 \\
&\text{H} & & \\
\end{align*}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.49 (d, \(J = 8.6\) Hz, 2H), 7.44 – 7.31 (m, 2H), 7.17 (dd, \(J = 7.5, 1.1\) Hz, 2H), 7.12 – 6.99 (m, 3H), 5.92 (s, 1H).
\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 146.8, 141.2, 129.6, 126.7 (q, \(J = 3.8\) Hz), 124.6, 122.9, 121.7 (q, \(J = 32.4\)), 120.0, 115.3.

4c: 4-(phenylamino)benzonitrile
The compound data were in accordance with the literature.

\[\text{Ph} \text{CN} \text{H} \]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.53 – 7.43 (m, 2H), 7.36 (t, \(J = 7.6\) Hz, 2H), 7.26 (d, \(J = 1.3\) Hz, 2H), 7.14 (ddd, \(J = 14.7, 8.5, 1.0\) Hz, 1H), 7.03 – 6.92 (m, 2H), 6.05 (s, 1H).

\(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 148.0, 140.0, 133.8, 129.6, 124.0, 121.3, 119.7, 114.9, 101.7.

4d: \(N\)-phenyl-3-(trifluoromethyl)aniline

The compound data were in accordance with the literature.

\[\text{Ph} \text{CF}_3 \text{H} \]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.38 – 7.30 (m, 3H), 7.28 (dd, \(J = 4.9, 4.3\) Hz, 1H), 7.23 – 7.17 (m, 1H), 7.17 – 7.08 (m, 3H), 7.08 – 6.96 (m, 1H), 5.65 (s, 1H).

\(^{13}\)C NMR (151 MHz, CDCl\(_3\)) \(\delta\) 144.0, 141.8, 131.6 (q, \(J = 33\) Hz), 129.8, 129.5, 124.1 (q, \(j = 180\) Hz), 122.3, 119.7, 119.1, 116.9 (q, \(j = 4\) Hz), 113.2.

4e: 3-bromo-N-phenylaniline

The compound data were in accordance with the literature.

\[\text{Ph} \text{Br} \text{H} \]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.42 – 7.28 (m, 2H), 7.23 (dt, \(J = 4.1, 2.3\) Hz, 1H), 7.18 – 7.09 (m, 3H), 7.08 – 7.00 (m, 2H), 7.00 – 6.91 (m, 1H), 5.71 (s, 1H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 144.9, 141.9, 130.7, 129.5, 123.4, 123.2, 122.2, 119.6, 119.0, 115.6.

4f: 2-fluoro-N-phenylaniline

The compound data were in accordance with the literature.

\[\text{Ph} \text{F} \text{H} \]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.42 – 7.28 (m, 2H), 7.23 (dt, \(J = 4.1, 2.3\) Hz, 1H), 7.18 – 7.09 (m, 3H), 7.08 – 7.00 (m, 2H), 7.00 – 6.91 (m, 1H), 5.71 (s, 1H).

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 144.9, 141.9, 130.7, 129.5, 123.4, 123.2, 122.2, 119.6, 119.0, 115.6.
1H NMR (300 MHz, CDCl$_3$) δ 7.51 – 7.19 (m, 2H), 7.17 – 6.86 (m, 6H), 6.88 – 6.69 (m, 1H), 5.76 (s, 1H).

13C NMR (75 MHz, CDCl$_3$) δ 152.9 (d, $J = 241.0$ Hz), 141.9, 129.3, 124.2, 124.2, 121.7, 120.4 (d, $J = 7.3$ Hz), 118.6, 117.1, 115.4 (d, $J = 19.2$ Hz).

4g: 2-chloro-N-phenylaniline
The compound data were in accordance with the literature.6

1H NMR (300 MHz, CDCl$_3$) δ 7.51 – 7.25 (m, 4H), 7.25 – 6.96 (m, 4H), 6.85 (t, $J = 7.6$ Hz, 1H), 6.15 (s, 1H).

13C NMR (75 MHz, CDCl$_3$) δ 141.5, 140.3, 129.8, 129.5, 127.5, 122.7, 121.5, 120.4, 120.2, 115.6.

4h: 2-methoxy-N-phenylaniline
The compound data were in accordance with the literature.6

1H NMR (600 MHz, CDCl$_3$) δ 7.45 – 7.28 (m, 3H), 7.25 (d, $J = 8.1$ Hz, 2H), 7.08 – 6.93 (m, 4H), 6.26 (s, 1H), 3.98 – 3.94 (m, 3H).

13C NMR (151 MHz, CDCl$_3$) δ 148.3, 142.8, 133.0, 129.3, 121.2, 120.9, 119.9, 118.6, 114.8, 110.6, 55.6.

4i: 3,5-dimethoxy-N-phenylaniline
The compound data were in accordance with the literature.1
\[\text{Ph} \]

\[\text{H NMR (300 MHz, CDCl}_3 \text{)} \delta 7.44 - 7.21 (m, 2H), 7.18 - 7.05 (m, 2H), 7.04 - 6.83 (m, 1H), 6.32 - 6.17 (m, 2H), 6.13 - 5.97 (m, 1H), 5.72 (s, 1H), 3.82 - 3.69 (m, 6H). \]

\[\text{C NMR (75 MHz, CDCl}_3 \text{)} \delta 161.6, 145.2, 142.5, 129.3, 121.4, 118.8, 95.7, 92.9, 55.3. \]

4j: 4-methyl-N-phenylaniline

The compound data were in accordance with the literature.¹

\[\text{Ph} \]

\[\text{H NMR (300 MHz, CDCl}_3 \text{)} \delta 7.32 - 7.19 (m, 2H), 7.16 - 6.96 (m, 6H), 6.90 (t, J = 7.1 Hz, 1H), 5.61 (s, 1H), 2.33 (s, 3H). \]

\[\text{C NMR (75 MHz, CDCl}_3 \text{)} \delta 143.9, 140.3, 131.0, 129.9, 129.3, 129.1, 120.3, 118.9, 116.9, 20.7. \]

4k: 4-(methylthio)-N-phenylaniline

The compound data were in accordance with the literature.⁷

\[\text{Ph} \]

\[\text{H NMR (300 MHz, CDCl}_3 \text{)} \delta 7.30 - 7.22 (m, 4H), 7.11 - 6.98 (m, 4H), 6.93 (dt, J = 18.7, 6.1 Hz, 1H), 5.68 (s, 1H), 2.46 (d, J = 4.3 Hz, 3H). \]

\[\text{C NMR (75 MHz, CDCl}_3 \text{)} \delta 143.0, 141.3, 129.9, 129.4, 129.0, 121.1, 118.5, 117.7, 17.9. \]

4l: N-phenylpyridin-2-amine

The compound data were in accordance with the literature.⁵
1H NMR (300 MHz, CDCl$_3$) δ 8.20 (s, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.40 – 7.15 (m, 4H), 7.13 – 6.97 (m, 1H), 6.96 – 6.79 (m, 2H), 6.77 – 6.61 (m, 1H).

13C NMR (75 MHz, CDCl$_3$) δ 155.9, 147.7, 140.1, 138.0, 129.3, 123.1, 120.6, 114.9, 108.3.

Table 2:

6a: Diphenylamine

The compound data were in accordance with the literature.1

6b: N-Phenynaphthalen-1-amine

The compound data were in accordance with the literature.1

6c: 4-Phenoxyphenyl)phenylamine
The compound data were in accordance with the literature.\(^8\)

\[
\begin{align*}
\text{PhO} & - \text{N} - \text{Ph} \\
\end{align*}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 7.30 \ (\text{dddd}, J = 8.4, 7.4, 4.8, 2.1 \text{ Hz}, 4 \text{H}), 7.15 - 6.87 \ (\text{m}, 10 \text{H}), 5.62 \ (\text{s}, 1 \text{H}).\)

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 158.5, 151.6, 144.2, 130.0, 129.9, 129.7, 123.0, 120.9, 120.9, 120.7, 118.3, 118.2, 117.2.\)

\textbf{6d: 4-Ethyl-N-phenylaniline}

The compound data were in accordance with the literature.\(^1\)

\[
\begin{align*}
\text{N} & - \text{Ph} \\
\end{align*}
\]

\(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 7.36 - 7.19 \ (\text{m}, 2 \text{H}), 7.42 - 6.83 \ (\text{m}, 2 \text{H}), 7.07 \ (\text{dd}, J = 5.2, 3.2 \text{ Hz}, 4 \text{H}), 6.95 \ (\text{dd}, J = 10.5, 4.2 \text{ Hz}, 1 \text{H}), 5.65 \ (\text{s}, 1 \text{H}), 2.67 \ (\text{q}, J = 7.6 \text{ Hz}, 2 \text{H}), 1.30 \ (\text{t}, J = 7.6 \text{ Hz}, 3 \text{H}).\)

\(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 143.9, 140.6, 137.4, 129.4, 128.7, 120.4, 118.9, 118.8, 117.0, 28.2, 15.8.\)

\textbf{6e: 3-Methoxy-N-phenylaniline}

The compound data were in accordance with the literature.\(^1\)
1H NMR (600 MHz, CDCl$_3$) δ 7.24 (t, $J = 7.7$ Hz, 2H), 7.13 (t, $J = 7.9$ Hz, 1H), 7.05 (d, $J = 7.9$ Hz, 2H), 6.91 (t, $J = 7.3$ Hz, 1H), 6.62 (d, $J = 8.5$ Hz, 2H), 6.46 (d, $J = 8.2$ Hz, 1H), 5.68 (s, 1H), 3.73 (s, 3H).
13C NMR (151 MHz, CDCl$_3$) δ 160.8, 144.7, 142.9, 130.2, 129.4, 121.3, 118.4, 110.3, 106.3, 103.4, 55.3.

6f: N-(3-Biphenyl)aniline
The compound data were in accordance with the literature.9

1H NMR (300 MHz, CDCl$_3$) δ 7.65 (ddd, $J = 4.3$, 3.5, 1.9 Hz, 2H), 7.50 (ddd, $J = 7.6$, 4.5, 1.3 Hz, 2H), 7.46 – 7.33 (m, 5H), 7.30 – 7.16 (m, 3H), 7.16 – 7.09 (m, 1H), 7.03 (ddd, $J = 8.4$, 2.2, 1.1 Hz, 1H), 5.82 (s, 1H).
13C NMR (75 MHz, CDCl$_3$) δ 143.5, 142.9, 142.4, 141.1, 129.6, 129.3, 128.7, 127.3, 127.1, 121.1, 119.8, 117.9, 116.5, 116.4.

6g: N-(3-Fluorophenyl)-N-phenylamine
The compound data were in accordance with the literature.10

1H NMR (300 MHz, CDCl$_3$) δ 7.46 – 7.28 (m, 2H), 7.27 – 7.10 (m, 3H), 7.04 (dt, $J = 14.6$, 4.1 Hz, 1H), 6.88 – 6.73 (m, 2H), 6.72 – 6.65 (m, 1H), 5.78 (s, 1H).
13C NMR (151 MHz, CDCl$_3$) δ 163.8 (d, $J = 243.9$ Hz), 145.4 (d, $J = 10.5$ Hz), 141.9, 130.4 (d, $J = 10.0$ Hz), 129.4, 122.0, 119.0, 112.4, 106.9 (d, $J = 21.5$ Hz), 103.5 (d, $J = 25.1$ Hz).
6h: 3-Chloro-N-phenylaniline
The compound data were in accordance with the literature.11

![3-Chloro-N-phenylaniline](image)

1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.42 – 7.23 (m, 2H), 7.3-6.9 (m, J = 15.9, 7.7 Hz, 5H), 6.91 (dd, J = 9.2, 4.0 Hz, 2H), 5.70 (s, 1H).
13C NMR (75 MHz, CDCl\textsubscript{3}) δ 144.8, 141.9, 135.0, 130.3, 129.5, 122.1, 120.5, 119.0, 116.6, 115.1.

Table 3:

8a: \textit{N}-benzylaniline
The compound data were in accordance with the literature.11

![\textit{N}-benzylaniline](image)

1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.41 – 7.26 (m, 5H), 7.24 – 7.15 (m, 2H), 6.79 – 6.69 (m, 1H), 6.69 – 6.60 (m, 2H), 4.34 (s, 2H), 4.08 (bs, 1H).
13C NMR (75 MHz, CDCl\textsubscript{3}) δ 148.1, 139.4, 129.3, 128.6, 127.5, 127.2, 117.5, 112.8, 48.3.

8b: 1,4-Diphenylpiperazine
The compound data were in accordance with the literature.12

![1,4-Diphenylpiperazine](image)

1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.32 – 7.25 (m, 4H), 6.99 (dd, J = 7.9, 0.7 Hz, 4H), 6.90 (td, J = 7.3, 0.7 Hz, 2H), 3.34 (d, J = 4.9 Hz, 8H).
13C NMR (151 MHz, CDCl\textsubscript{3}) δ 151.3, 129.3, 129.2, 120.1, 116.4, 49.5.

8c: 1-Phenyl-4-(pyridin-2-yl)piperazine
The compound data were in accordance with the literature.12

![1-Phenyl-4-(pyridin-2-yl)piperazine](image)

1H NMR (300 MHz, CDCl\textsubscript{3}) δ 7.32 – 7.25 (m, 4H), 6.99 (dd, J = 7.9, 0.7 Hz, 4H), 6.90 (td, J = 7.3, 0.7 Hz, 2H), 3.34 (d, J = 4.9 Hz, 8H).
13C NMR (151 MHz, CDCl\textsubscript{3}) δ 151.3, 129.3, 129.2, 120.1, 116.4, 49.5.
1H NMR (300 MHz, CDCl$_3$) δ 8.22 (dd, $J = 5.0$, 1.3 Hz, 1H), 7.52 (ddd, $J = 8.9$, 7.2, 2.0 Hz, 1H), 7.34 – 7.26 (m, 2H), 6.98 (dd, $J = 13.0$, 5.1 Hz, 2H), 6.89 (t, $J = 7.3$ Hz, 1H), 6.75 – 6.62 (m, 2H), 3.71 (dd, $J = 6.1$, 4.3 Hz, 4H), 3.31 (dd, $J = 6.1$, 4.3 Hz, 4H).

13C NMR (151 MHz, CDCl$_3$) δ 159.2, 151.2, 147.6, 137.9, 129.2, 120.1, 116.4, 113.6, 107.5, 49.2, 45.4.

8d: 2-(4-Phenylpiperazin-1-yl)pyrimidine

The compound data were in accordance with the literature.13

1H NMR (300 MHz, CDCl$_3$) δ 8.55 – 8.18 (m, 2H), 7.44 – 7.17 (m, 3H), 7.03 – 6.94 (m, 1H), 6.94 – 6.84 (m, 1H), 6.52 (dd, $J = 6.2$, 3.2 Hz, 1H), 4.10 – 3.88 (m, 4H), 3.23 (dd, $J = 23.1$, 18.0 Hz, 4H).

13C NMR (151 MHz, CDCl$_3$) δ 161.7, 157.8, 151.3, 129.2, 120.2, 116.5, 110.1, 49.4, 43.7.

References:

1H and 13C NMR of 4-Methoxy-N-phenylaniline (3a)
^{1}H and ^{13}C NMR of 4-Chloro-N-phenylaniline (4a)
1H and 13C NMR of N-phenyl-4-(trifluoromethyl)aniline (4b)
1H and 13C NMR of 4-(phenylamino)benzonitrile (4c)
1H and 13C NMR of N-phenyl-3-(trifluoromethyl)aniline (4d)
1H and 13C NMR of 3-bromo-N-phenylaniline (4e)
1H and 13C NMR of 2-fluoro-N-phenylaniline (4f)
1H and 13C NMR of 2-chloro-N-phenylaniline (4g)
1H and 13C NMR of 2-methoxy-N-phenylaniline (4h)
1H and 13C NMR of 3,5-dimethoxy-N-phenylaniline (4i)
1H and 13C NMR of 4-Methyl-N-phenylaniline (4j)
1H and 13C NMR of 4-(methylthio)-N-phenylaniline (4k)
^{1}H and ^{13}C NMR of N-phenylpyridin-2-amine (4I)
1H and 13C NMR of Diphenylamine (6a)
1H and 13C NMR of N-Phenynaphthalen-1-amine (6b)
1H and 13C NMR of 4-Phenoxyphenyl)phenylamine (6c)
1H and 13C NMR of 4-Ethyl-N-phenylaniline (6d)
1H and 13C NMR of 3-Methoxy-N-phenylaniline (6e)
1H and 13C NMR of N-(3-Biphenyl)aniline (6f)
1H and 13C NMR of N-(3-Fluorophenyl)-N-phenylamine (6g)
1H and 13C NMR of 3-Chloro-N-phenylaniline (6h)
1H and 13C NMR of N-benzylaniline (8a)
1H and 13C NMR of 1,4-Diphenylpiperazine (8b)
1H and 13C NMR of 1-Phenyl-4-(pyridin-2-yl)piperazine (8c)
1H and 13C NMR of 2-(4-Phenylpiperazin-1-yl)pyrimidine (8d)