Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

High Luminescence Color Gradient by Physical Mixing of Two Perovskite Nanocrystals

Parul Bansal^a, Yusuf Khan^b and Prasenjit Kar^{*a}

^aDepartment of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand247667, India.

^b Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India

Corresponding Email Address : kar.prasen@gmail.com

Contents

- 1. Experimental Section:
- 1.1 Synthesis of MAI and MABr
- 1.2 Synthesis of MAPBI₃ and MAPbBr₃
- 1.3 Preparation of samples P1-P9
- 2.Characterization
- 2.1 UV-Vis Absorption spectroscopy
- 2.2 TCSPC studies
- 2.3 Fourier Transform-Infrared spectroscopy
- 2.4 X-Ray Photoelectron Spectroscopy (XPS)
- 2.5 Transmission Electron Microscopy
- 2.6 Atomic Force Microcopy
- 2.7 Powder XRD

Figure S1 PL spectra of samples P1 to P9 showing increasing intensity from P1 to P9. **Figure S2** the excitation spectra of all the samples including MAPbI₃ and MAPbBr₃ PNCs **Figure S3** shows FT-IR spectra of P1-P9 samples

Figure S4 shows variation of lattice parameter in samples $(a/\sqrt{2} \text{ is plotted for tetragonal phases})$

Figure S5 a) shows survey scan of sample P3 b) Narrow scan of Pb²⁺ of sample P3 c)

Narrow scan of I 3d d) shows survey scan of sample P6 e) Narrow scan of Pb^{2+} of sample P6

f) Narrow scan of I 3d g) shows survey scan of sample P4 h) Narrow scan of Pb²⁺ of sample

P4 i) shows survey scan of sample P7 j) Narrow scan of Pb²⁺ of sample P7

Figure S6 TCSPC data for MAPbBr₃ and MAPbI₃

Figure. S7 represents AFM data of sample P9 and P8

Table S1 shows preparation of samples P1 to P9 briefly

Table S2 shows absolute Photoluminescence Quantum Yield values for all the samples

Table S3 details of weighing parameters and lifetimes for MAPbBr3 and MAPbI3 NCs

Table S4 summarizes the details of parameters of TCSPC.

- 1. Experimental Section:
- 1.1 Synthesis of MAI and MABr

Methylammonium Iodide/Bromide (MAI/ MABr) synthesis. Briefly, in a 50 ml flask, 5.14 ml CH₃NH₂, 40% in methanol, was mixed with 10 ml of ethanol. Then, at room temperature, 6 ml 57% water solution of the HI/ HBr was added dropwise with continuous stirring. Obtained solution was placed in rotary evaporator at 60°C for removing all solvents. Then after several time washing with diethyl ether, MAI was dissolved in ethanol and precipitated with diethyl ether twice. Then, Recrystallised product was obtained.

CH₃NH₃PbI₃ Nanocrystals

0.1 mmol of CH_3NH_3I and 0.1 mmol of PbI_2 were dissolved in 1ml of DMF forming 0.1mM solution. 100 μ L of oleic acid and 200 μ L of oleylamine has been added simultaneously. Next 100 μ L of this mixture was injected into 3ml of anti-solvent choloroform media. Obtained solution was observed under UV chamber showing Red color.

CH₃NH₃PbBr₃ Nanocrystals

0.1 mmol of CH_3NH_3Br and 0.1 mmol of $PbBr_2$ were dissolved in 1ml of DMF forming 0.1mM solution. 100 μ L of oleic acid and 200 μ L of oleylamine has been added simultaneously. Next 100 μ L of this mixture was injected into 3ml of anti-solvent choloroform media. Obtained solution was observed under UV chamber was showing blue color.

Now further we have prepared 9 solutions by varying the compositions of already prepared above CH₃NH₃PbBr₃ and CH₃NH₃PbI₃.

Preparation of P1 In the borosil glass tube 2.5ml of chloroform was taken. 100ul of $CH_3NH_3PbI_3$ and 900ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to light blue.

Preparation of P2 In the borosil glass tube 2.5ml of chloroform was taken. 200ul of $CH_3NH_3PbI_3$ and 800ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to cyan blue.

Preparation of P3 In the borosil glass tube 2.5ml of chloroform was taken. 300ul of $CH_3NH_3PbI_3$ and 700ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to dark cyan.

Preparation of P4 In the borosil glass tube 2.5ml of chloroform was taken. 400ul of $CH_3NH_3PbI_3$ and 600ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to light greenish .

Preparation of P5 In the borosil glass tube 2.5ml of chloroform was taken. 500ul of $CH_3NH_3PbI_3$ and 500ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to green.

Preparation of P6 In the borosil glass tube 2.5ml of chloroform was taken. 600ul of $CH_3NH_3PbI_3$ and 400ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to green.

Preparation of P7 In the borosil glass tube 2.5ml of chloroform was taken. 700ul of CH₃NH₃PbI₃ and 300ul of CH₃NH₃PbBr₃ added successively. Suddenly color will change to green-yellow.

Preparation of P8 In the borosil glass tube 2.5ml of chloroform was taken. 800ul of $CH_3NH_3PbI_3$ and 200ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to yellow.

Preparation of P9 In the borosil glass tube 2.5ml of chloroform was taken. 900ul of $CH_3NH_3PbI_3$ and 100ul of $CH_3NH_3PbBr_3$ added successively. Suddenly color will change to yellow-orange .

Name of Sample	CH ₃ NH ₃ PbI ₃ added	CH ₃ NH ₃ PbBr ₃ added	Solvent added
P1	100µL	900 μL	2.5 ml
P2	200 µL	800 μL	2.5ml
P3	300 µL	700 µL	2.5ml
P4	400 µL	600 μL	2.5ml
P5	500 μL	500 μL	2.5 ml
P6	600 μL	400 µL	2.5 ml
P7	700 µL	300 µL	2.5 ml
P8	800 μL	200 µL	2.5 ml
P9	900 μL	100 µL	2.5 ml

 Table S1 represents preparation of samples

2. Material characterization

2.1 UV Vis Absorption Spectroscopy and **Photoluminescence Spectroscopy** Shimadzu UV-Vis 2450 spectrophotometer was used for recording UV-Vis absorption spectra in the range of 200-650 nm. Photoluminescence spectra were taken by Horiba scientific Fluoromax-4C spectrophotometer. A quartz cuvette of 10 mm path length and volume 3.5 ml (prepared by using table S1) was used for collecting the spectra.

2.2. TCSPC studies

Fluorescence lifetime decay measurements were recorded on 1cm quartz cell on a Horiba Jobin Yvon," Fluorocube Fluorescence Lifetime System" equipped with NanoLEDs and LDs as the excitation source and an automated polarization accessory (Model 5000 U-02).

2.3 Fourier Transform Infrared Spectroscopy (FTIR) Infra red spectra (IR) of material were recorded by using Thermo scientific Nicolet 6700. The use of the spectral subtraction provided reliable and reproducible results.

2.4 X-Ray Photoelectron Spectroscopy (XPS) Thin film of perovskites has been studied on XPS with model no. PHI 5000 VersaProbe III for surface analysis.

2.5 Transmission Electron Micreoscopy (TEM) TEM study was carried out by TEM TECHNAI G2 20 S-TWIN. A drop (5-10 μ L) of diluted samples was placed on Carbon coated Copper grid. Again a drop was added before drying it. Afterwards drying was carried at ambient temperature.

2.6 Atomic Force Microscopy (AFM) was performed on model NT-MDT-Integra on tapping mode.

2.7 Powder XRD was carried out on Bruker -D8 Advance having Target Cu and accelerating voltage 40kV from 5 to 50° at the rate of 2°/min. Thin film samples by concentrating the sample (using centrifuge) were prepared on silica glass.

Fig. S1 PL spectra of samples P1 to P9 showing increasing intensity from P1 to P9

Fig. S2 shows the excitation spectra of all the samples including MAPbI₃ and MAPbBr₃ PNCs

Samples	PLQY
MAPbBr ₃	47.85%
P1- P5	<5%
P6	9.02%
P7	12.39%
P8	15.05%
Р9	37.03%
MAPbI ₃	49.78%

Table S2. shows absolute Photoluminescence Quantum Yield values for all the samples

Fig.S3 shows FT-IR spectra of P1-P9 samples

Details of PXRD sample preparation

Sample solutions prepared in CHCl₃ were concentrated with the help of centrifugation and then drop-casted on silica substrate.

MAPbBr₃

20	θ	sinO	sin ² O	Ratio	(hkl)	d (Å)	a (Å)
15.02	7.51	0.13	0.0169	1	100	5.92	5.91
30.19	15.09	0.26	0.0676	4	002	2.96	5.92
3 200 10	(2) 3						

 $a^3 = 206.42 (Å)^3$

P1

20	θ	sinO	sin ² O	Ratio	(hkl)	d (Å)	a (Å)
15.00	7.50	0.1305	0.0170	1.00	100	5.90	5.90
21.17	10.58	0.1836	0.0337	1.99	011	4.19	5.92
30.16	15.08	0.2606	0.0676	3.97	002	2.95	5.92
33.88	16.94	0.2913	0.0848	4.98	021	2.64	5.91
45.95	22.97	0.3902	0.1523	8.94	300	1.97	5.91

 $a^3 = 206.63 (Å)^3$

P2

20	θ	sinO	$\sin^2 \Theta$	Ratio	(hkl)	d (Å)	a (Å)
14.96	7.48	0.130	0.0169	1.00	100	5.92	5.92
21.18	10.59	0.184	0.0337	1.99	011	4.19	5.93
30.08	15.04	0.259	0.0673	3.98	002	2.96	5.93
33.73	16.86	0.290	0.0841	4.98	021	2.65	5.93
3 000 50	(8)2						

 $a^3 = 208.52 (Å)^3$

P4

20	θ	sinO	sin ² Θ	Ratio	(hkl)	d (Å)	a(Å)
14.60	7.24	0.129	0.0162	1.00	100	6.02	6.02
14.08	/.34	0.128	0.0103	1.00	100	0.02	0.02
29.70	14.85	0.256	0.0656	4.02	002	3.00	6.01
33.28	16.64	0.286	0.0819	5.03	210	2.68	6.01
3 017 00	(8)2						

 $a^3 = 217.08 (Å)^3$

P6

20	θ	sinO	$\sin^2 \Theta$	Ratio(*2)	(hkl)	d (Å)	a/√2 (Å)
14.66	7.33	0.127	0.0162	2.00	110	6.062	6.05
29.60	14.80	0.256	0.0652	8.01	220	3.007	6.15

P7

20	θ	sinO	sin ² O	Ratio(*2)	(hkl)	d (Å)	a/√2 (Å)
14.56	7.28	0.127	0.0160	2.00	110	6.06	6.09
29.40	14.7	0.253	0.0643	8.01	220	3.002	6.12

P8

20	θ	sinO	sin ² O	Ratio(*2)	(hkl)	d (Å)	a/√2 (Å)
14.49	7.25	0.126	0.0159	2.00	110	6.12	6.12
29.13	14.56	0.251	0.0632	7.97	220	3.06	6.18

P9

20	θ	sinO	$\sin^2 \Theta$	Ratio(*2)	(hkl)	d(Å)	a/√2 (Å)
14 11	7 055	0 1 2 2	0 01488	2 00	110	6 31	6 31
20.02	10.01	0.17382	0.030201	4.06	200	4.45	6.29
28.62	14.31	0.2471	0.061088	8.20	220	3.11	6.32
40.8	20.40	0.3485	0.121501	16.01	004	2.21	6.31

MAPbI₃

(6.2.4
6.32	6.34
3.63	6.32
3.14	6.34
2.09	6.33
_	6.32 3.63 3.14 2.09

 $a^2c = 254.03 \text{ Å}$

using $\sin^2\Theta = A(h^2+k^2)$ gives A= 0.014849 and $\sin^2\Theta = Cl^2$ gives C= 0.00371225 which gives two lattice parameters a= 8.95 Å and c=12.64 Å. Also $a/\sqrt{2}= 6.34$ Å and c/2 = 6.32 Å for MAPbI₃.

 $a/\sqrt{2}$ and c/2 parameters in tetragonal phase are compared with cubic lattice parameter, a for comparing and plotting data of two different phases i.e. tetragonal and cubic.

Fig.S4 shows variation of lattice parameter in samples (a/ $\sqrt{2}$ is plotted for tetragonal phases)

Fig. S5 a) shows survey scan of sample P3 b) Narrow scan of Pb^{2+} of sample P3 c) Narrow scan of I 3d d) shows survey scan of sample P6 e) Narrow scan of Pb^{2+} of sample P6 f) Narrow scan of I 3d g) shows survey scan of sample P4 h) Narrow scan of Pb^{2+} of sample P4 i) shows survey scan of sample P7 j) Narrow scan of Pb^{2+} of sample P7

TCSPC details

For CH₃NH₃PbBr₃ 405nm laser has been used at λ_{max} =448.5 nm and for CH₃NH₃PbI₃ 460nm laser has been used at λ_{max} =602nm. Samples P1-P9 were performed at laser 440nm and their respective $\lambda_{max from}$ emission spectra. Average lifetime is calcuated using

$$\tau_{\text{avg}} = (A_1\tau_1^2 + A_2\tau_2^2 + A_3\tau_3^2) / (A_1\tau_1 + A_2\tau_2 + A_3\tau_3)$$

Table S3 details of weighing parameters and lifetimes for MAPbBr3 and MAPbI3 NCs

Sample	A ₁	A ₂	A ₃	τ_1	$ au_2$	τ ₃
CH ₃ NH ₃ PbBr ₃	13.11	68.65	18.24	1.13 ns	9.23 ns	32.3 ns
CH ₃ NH ₃ PbI ₃	27.45	8.59	63.96	14.87 ns	108.96 ns	5.97 ns

Table S4 summarizes the details of parameters of TCSPC.

Sample	τ_1 (ns)	τ_2 (ns)	A ₁	A_2	$\tau_{avg}(ns)$
P1	0.20	2.88	91.23	8.77	1.73
P2	1.38	8.02	70.33	29.67	6.08
P3	1.87	11.74	47.45	52.55	10.50
P4	1.32	10.81	62.81	37.19	9.20
P7	6.69	24.40	72.65	20.35	15.64
P8	6.30	15.30	41.94	58.06	13.24
Р9	6.65	14.4	50.90	49.10	11.90

Fig. S7represents AFM data of sample P9 and P8