A straightforward and versatile FeCl₃ catalyzed Friedel-Crafts C-glycosylation process. Application to the synthesis of new functionalized C-nucleosides.

Hamza Tachallait#,1,2 Mauro Safir Filho#,2,4 Hamid Marzag#,1,2 Khalid Bougrin*,2 Luc Demange,1,3 Anthony R. Martin,1 Rachid Benhida*1,5

1 Université Côte d’Azur, CNRS, Institut de Chimie de Nice UMR 7272 - 06108 Nice, France.

2 Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.

3 Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l’Observatoire & UFR Biomédicale des Saints Pères, 45 rue des Saints Pères, Paris Fr-75006, France.

4 CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70040-020, Brazil

5 Mohamed VI Polytechnic University, UM6P, 43150 Ben Guerir, Morocco.

SUPPLEMENTARY MATERIAL

General procedures: Chemistry S2
List of the synthesized compounds S3
Compounds characterization S4-S8
General procedures: Photophysics S9
Copies of ¹H and ¹³C NMR spectra S10-S25
Copies of HRMS spectra S26-S33
Figure S1 S34
Chemistry

General procedures.

All organic solvents were purchased from commercial sources and used as received or dried using standard procedures; all chemicals were purchased from Aldrich, Merck or Alfa Aesar and used without further purification.

Analytical thin layer-chromatographies (TLC) have been performed on pre-coated silica gel plates (Kieselgel 60 F254, E. Merck, Germany), and chromatograms were visualized by UV-light irradiation (254 and 360 nm), then by staining with ninhydrin, p-anisaldehyde or H2SO4/EtOH. Purifications by column chromatography have been performed using silica gel, 100-200 mesh (Merck, Germany).

NMR spectroscopies were recorded in dry deuterated solvent (DMSO or chloroform) on a Bruker AC 200, or on a Bruker AC 500 spectrometers at 200 MHz or 400 MHz for 1H NMR and 50 MHz for 13C NMR; δ is expressed in ppm related to TMS (0 ppm) as internal standard. Splitting patterns are designated as follow: s (singlet), d (doublet), t (triplet), m (multiplet), br (broad). Coupling constants (J values) are listed in Hertz (Hz). Mass spectra (ESI-MS) were recorded on a Bruker Daltonics Esquire 3000+, and the samples were diluted in methanol.

General procedure for the Friedel-Craft ribosylation.

To a stirred solution of the carbohydrate (1’-β-ribofuranose-1’,2’,3’,5’-tetraacetate, 1 mmol) and the appropriate (hetero)aryle (2 mmol) in dichloromethane (8 mL), was added at room temperature and in one portion FeCl3 (10 mol%). The resulting mixture is heated in refluxing dichloromethane and the reaction is monitored by TLC. Once the carbohydrate fully reacted (10-30 min.), 10 mL of a saturated solution of NaHCO3 was added to quench the reaction. The mixture is extracted three times using dichloromethane (15 mL). The organic layers were combined, then dried over MgSO4 and concentrated under reduced pressure; the crude material is purified by flash chromatography using a mixture of ethyl acetate and hexane as solvent. Importantly, samples used for the fluorescence assay have been submitted to a second purification (preparative TLC) is order to strengthen their final purities.
List of the synthesized compounds.

<table>
<thead>
<tr>
<th>4a</th>
<th>4g</th>
<th>5a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4b</th>
<th>4h</th>
<th>5b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4c</th>
<th>4i</th>
<th>5c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4d</th>
<th>4j</th>
<th>5d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4e</th>
<th>4k</th>
<th>5e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4f</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Characterization of compounds 4a-4k and 5a-5e

4a

\[\text{Rf} = 0.54 \text{ (Cyclohexane/AcOEt : 1-1)} ; \]
\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta\) 6.99 (bs, 1H), 6.70-6.62 (m, 2H), 5.74 (t, \(J = 4.2\) Hz, 1H), 5.31 (t, \(J = 4.5\) Hz, 1H), 5.17 (d, \(J = 3.7\) Hz, 1H), 4.40 – 4.05 (m, 3H), 3.68 (s, 3H), 3.67 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H), 1.97 (s, 3H);
\(^{13}\text{C NMR (50 MHz, CDCl}_3\) \(\delta\) 170.7, 169.6, 169.5, 153.7, 150.6, 127.5, 113.6, 113.1, 111.3, 79.3, 75.4, 72.0, 70.5, 63.1, 55.8, 55.5, 20.7, 20.6, 20.5
HRMS Calcd. for C\(_{19}\)H\(_{25}\)O\(_9\): (\([\text{M+}]\)): 397.1420, Found: 397.14931.

4b

\[\text{Rf} = 0.73 \text{ (Cyclohexane/AcOEt : 1-1)} ; \]
\(^1\text{H NMR (200 MHz, CDCl}_3\) \(\delta\) 7.71 (d, \(J = 1.6\) Hz, 1H), 7.47 (dd, \(J = 8.6, J' = 2.3\) Hz, 1H), 6.50 (d, \(J = 8.6\) Hz, 1H), 5.72 (dd, \(J = 4.3, J' = 3.3\) Hz, 1H), 5.40 (d, \(J = 3.1\) Hz, 1H), 5.34 (dd, \(J = 8.1, 4.4\) Hz, 1H), 4.39 (d, \(J = 2.8\) Hz, 1H), 4.36 – 4.30 (m, 1H), 4.12 (dd, \(J = 12.8, J' = 5.5\) Hz, 1H), 3.70 (s, 3H), 2.06 (s, 3H), 1.98 (s, 3H), 1.74 (s, 3H);
\(^{13}\text{C NMR (50 MHz, CDCl}_3\) \(\delta\) 170.7, 169.8, 169.3, 155.7, 137.4, 136.1, 126.8, 112.0, 82.3, 76.8, 76.3, 72.5, 71.8, 63.6, 55.4, 20.8, 20.5, 20.3;
HRMS Calcd. for C\(_{18}\)H\(_{22}\)O\(_8\): (\([\text{M+}]\)): 492.0281, Found: 493.03539.

4c

\[\text{Rf} = 0.64 \text{ (Cyclohexane/AcOEt : 1-1)} ; \]
\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta\) 7.43 (d, \(J = 6.9\) Hz, 1H), 7.23 (t, \(J = 7.6\) Hz, 1H), 6.88 (t, \(J = 7.5\) Hz, 1H), 6.72 (d, \(J = 8.1\) Hz, 1H), 5.75 (t, \(J = 3.3\) Hz, 1H), 5.39 – 4.86 (m, 2H), 4.40 – 4.18 (m, 2H), 4.13 (dd, \(J = 12.8, 5.6\) Hz, 1H), 3.71 (s, 3H), 2.04 (s, 3H), 1.87 (s, 3H), 1.68 (s, 3H);
\(^{13}\text{C NMR (50 MHz, CDCl}_3\) \(\delta\) 170.8, 169.8, 169.4, 155.8, 128.7, 127.3, 126.9, 120.0, 109.5, 79.7, 75.3, 72.7, 72.1, 63.7, 55.2, 20.8, 20.5, 20.3;
HRMS Calcd. for C\(_{18}\)H\(_{23}\)O\(_8\): (\([\text{M+}]\)): 367.1315, Found: 397.13934.

4d

\[\text{Rf} = 0.75 \text{ (Cyclohexane/AcOEt : 1-1)} ; \]
\(^1\text{H NMR (200 MHz, CDCl}_3\) \(\delta\) 7.55 (d, \(J = 2.6\) Hz, 1H), 7.28 (dd, \(J = 8.7, J' = 2.5\) Hz, 1H), 6.61 (d, \(J = 8.7\) Hz, 1H), 5.73 (t, \(J = 3.0\) Hz, 1H),
5.41 (d, J = 3.1 Hz, 1H), 5.34 (dd, J = 8.1, J’ = 4.3 Hz, 1H), 4.42 – 4.21 (m, 2H), 4.12 (dd, J = 12.8, J’ = 5.5 Hz, 1H), 3.70 (s, 3H), 2.06 (s, 3H), 1.98 (s, 3H), 1.74 (s, 3H); 13C NMR (50 MHz, CDCl3) δ 169.8, 168.8, 168.4, 153.9, 130.3, 129.3, 125.5, 111.6, 110.4, 78.0, 75.8, 71.5, 70.9, 62.6, 54.5, 19.8, 19.5, 19.3; HRMS Calcd. for C18H22O8Br: ([M+]): 445.0420, Found: 445.04926.

Rf = 0.71 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl3) δ 7.24 (d, J = 5.1 Hz, 1H), 6.88 (d, J = 5.3 Hz, 1H), 5.31 – 5.19 (m, 2H), 4.42 – 4.02 (m, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H); 13C NMR (50 MHz, CDCl3) δ 170.45, 169.68, 169.35, 136.20, 130.30, 126.04, 109.59, 79.96, 77.82, 76.01, 71.56, 63.29, 20.80, 20.55, 20.44; HRMS Calcd. for C15H18O7BrS: ([M+]): 420.9878, Found: 420.99533.

Rf = 0.69 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl3) δ 6.86 (d, J = 3.8 Hz, 1H), 6.76 (d, J = 3.8 Hz, 1H), 5.56 – 5.16 (m, 2H), 5.08 (d, J = 2.7 Hz, 1H), 4.38-4.10 (m, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H); 13C NMR (50 MHz, CDCl3) δ 169.5, 168.7, 168.6, 141.9, 128.7, 124.6, 111.7, 79.0, 77.7, 75.3, 70.6, 62.3, 19.8, 19.6, 19.5; HRMS Calcd. for C18H23O8S: ([M+]): 435.0035, Found: 435.0112.

Rf = 0.72 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl3) δ 6.69 (s, 1H), 5.21 (t, J = 4.5 Hz, 1H), 5.12 – 5.00 (m, 2H), 4.33 (dd, J = 11.7 Hz, J’ = 2.8 Hz, 1H), 4.26 – 4.19 (m, 1H), 4.13 (dd, J = 11.7 Hz, J’ = 3.7 Hz, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H); 13C NMR (50 MHz, CDCl3) δ 170.5, 169.7, 169.6, 140.6, 137.0, 127.2, 109.5, 79.8, 78.7, 76.2, 71.6, 63.3, 20.8, 20.5, 20.5, 15.2; HRMS Calcd. for C14H20O7BrS: 435.0035, Found: 435.0112.

Rf = 0.71 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl3) δ 7.05 (d, J = 3.7 Hz, 1H), 6.68 (d, J = 3.7 Hz, 1H), 5.22 (t, J = 4.6 Hz, 1H), 5.17 – 5.04 (m, 2H), 4.35 (dd, J = 11.7 Hz, J’ = 2.8 Hz, 1H), 4.26-4.21 (m, 1H), 4.14 (dd, J = 11.7 Hz, J’ = 3.7 Hz, 1H), 2.07 (s, 3H), 2.04
(s, 3H), 2.01 (s, 3H); 1C NMR (50 MHz, CDCl$_3$) δ 170.6, 169.7, 169.6, 147.3, 136.8, 126.8, 80.0, 75.5, 76.4, 71.6, 63.3, 20.9, 20.6, 20.5; HRMS Calcd. for C$_{13}$H$_{18}$O$_7$: 467.9740, Found: 468.9813.

Rf = 0.60 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl$_3$) δ 7.33 (d, J = 5.3 Hz, 1H), 7.15 (d, J = 5.3 Hz, 1H), 5.87 (t, J = 4.3, 3.8 Hz, 1H), 5.44 – 5.07 (m, 2H), 4.45 – 4.04 (m, 5H), 2.06 (s, 3H), 2.02 (s, 3H), 1.97 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); 1C NMR (50 MHz, CDCl$_3$) δ 170.7, 169.5, 169.1, 128.7, 128.3, 124.3, 78.3, 77.4, 72.3, 72.2, 63.3, 60.7, 20.8, 20.4, 20.2, 14.2; HRMS Calcd. for C$_{18}$H$_{23}$O$_9$: 415.0985, Found: 415.10583.

Rf = 0.69 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl$_3$) δ 7.36 (s, 1H), 6.36 – 6.20 (m, 2H), 5.43 (t, J = 5.3 Hz, 1H), 5.32 (t, J = 5.3 Hz, 1H), 4.94 (d, J = 5.6 Hz, 1H), 4.33 (dd, J = 11.6, 3.1 Hz, 1H), 4.26 – 4.17 (m, 1H), 4.09 (dd, J = 11.6, 4.5 Hz, 1H), 2.03 (s, 6H), 2.00 (s, 3H); 1C NMR (50 MHz, CDCl$_3$) δ 170.6, 169.7, 169.6, 150.0, 143.4, 110.4, 109.4, 79.2, 76.1, 73.3, 71.7, 63.5, 20.7, 20.6, 20.5; HRMS Calcd. for C$_{15}$H$_{19}$O$_8$: ([M$^+$]): 327.1002, Found: 327.10744.

Rf = 0.61 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl$_3$) δ 7.93 (s, 1H), 6.69 (s, 1H), 5.40 (t, J = 5.5 Hz, 1H), 5.28 (t, J = 5.3 Hz, 1H), 4.92 (d, J = 5.7 Hz, 1H), 4.34 (dd, J = 11.7 Hz, J' = 3.1 Hz, 1H), 4.23 (q, J = 7.1 Hz, 3H), 4.10 (dd, J = 11.7 Hz, J' = 4.2 Hz, 1H), 2.06 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); 1C NMR (50 MHz, CDCl$_3$) δ 170.6, 169.7, 169.5, 151.5, 148.0, 120.3, 109.3, 79.5, 75.9, 73.2, 71.4, 63.3, 60.6, 20.7, 20.5, 14.3; HRMS Calcd. for C$_{18}$H$_{25}$O$_{10}$: 399.1213, Found: 399.1281.

Rf = 0.69 (Cyclohexane/AcOEt : 1-1); 1H NMR (400 MHz, CDCl$_3$) δ 8.08 (d, J = 8.7 Hz, 1H), 7.76 (d, J = 9.1 Hz, 1H), 7.68 (dd, J = 8.2 Hz, J' = 1.3 Hz, 1H), 7.39 (t, J = 7.8 Hz,
1H), 7.25 (t, J = 7.5 Hz, 1H), 7.18 (d, J = 9.0 Hz, 1H), 5.82 (d, J = 5.7 Hz, 1H), 5.72 (t, J = 6.1 Hz, 1H), 5.52 (t, J = 6.7 Hz, 1H), 4.38 (dd, J = 11.5 Hz, J’ = 2.0 Hz, 1H), 4.26–4.19 (m, 2H), 3.90 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H), 1.94 (s, 3H); 13C NMR (50 MHz, CDCl₃) δ 170.7, 169.7, 169.4, 156.1, 132.8, 131.3, 123.3, 128.8, 127.0, 123.5, 122.7, 116.9, 113.5, 78.9, 77.8, 74.2, 70.9, 63.6, 56.5, 20.8 (x2), 20.6; HRMS Calcd. for C₂₅H₂₇O₇: 417.1471, Found: 417.15442.

Rf = 0.73 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl₃) δ 8.48–8.40 (m, 3H), 7.99–7.92 (m, 2H), 7.47–7.36 (m, 4H), 6.35 (d, J = 8.0 Hz, 1H), 5.68–5.62 (m, 2H), 4.56 (dd, J = 12.2, J’ = 2.7 Hz, 1H), 4.46 (dd, J = 12.3, J’ = 3.6 Hz, 1H), 4.32 (m, 1H), 2.21 (s, 3H), 2.12 (s, 3H), 1.84 (s, 3H); 13C NMR (50 MHz, CDCl₃) δ 170.6, 169.7, 169.4, 138.8, 131.5, 130.5, 129.8, 129.5, 127.8, 127.7, 127.4, 126.2, 126.1, 124.8, 124.1, 123.4, 121.1, 81.8, 78.8, 74.7, 70.3, 63.3, 20.9, 20.6, 20.3; HRMS Calcd. for C₂₅H₂₇O₇: 437.1522, Found: 437.15958.

Rf = 0.31 (Cyclohexane/AcOEt : 8-2); 1H NMR (200 MHz, CDCl₃) δ 8.32–8.29 (m, 1H), 8.25–8.20 (m, 4H), 8.15–8.12 (m, 1H), 8.11–8.07 (m, 2H), 8.06–8.01 (m, 1H), 6.12 (d, J = 6.5 Hz, 1H), 5.45 (m, 2H), 4.72–4.33 (m, 3H), 2.20 (s, 3H), 2.18 (s, 3H), 2.06 (s, 3H); 13C NMR (50 MHz, CDCl₃) δ 170.9, 169.9, 169.6, 131.5, 131.5, 131.1, 130.7, 128.6, 128.0, 127.9, 127.6, 126.2, 125.7, 125.4, 125.3, 124.9, 124.8, 123.2, 122.4, 80.2, 79.3, 71.9, 63.8, 53.6, 21.1, 20.9, 20.7; HRMS Calcd. for C₂₇H₂₄O₇: ([M+]): 461.1522, Found [M+Na⁺]: 483.14160.

Rf = 0.70 (Cyclohexane/AcOEt : 1-1); 1H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 9.2 Hz, 2H), 7.41–7.38 (m, 3H), 7.31 (t, J = 7.8 Hz, 2H), 7.07 (t, J = 7.9 Hz, 2H), 6.73–6.78 (m, 3H), 6.03 (d, J = 8.5 Hz, 1H), 4.95 (dd, J = 5.5 Hz, J’ = 1.9 Hz, 1H), 4.45 (t, J = 7.0 Hz, 1H), 4.14 (bs), 4.00 (d, J = 3.4 Hz, 2H), 2.00 (s, 3H), 1.99 (s, 3H) 1.84 (s, 3H); 13C NMR
(50 MHz, CDCl$_3$) δ 170.4, 169.8, 169.0, 148.8, 137.7, 134.8, 133.2, 129.4, 129.1 (x2), 128.6, 128.3, 126.4 (x2) 126.0, 124.3, 120.1, 116.1 (x2), 89.2, 78.2, 71.0, 70.6, 63.9, 20.7, 20.4, 20.4; HRMS Calcd. for C$_{27}$H$_{28}$O$_2$N: 478.1788, Found: 478.1859.

Rf = 0.61 (Cyclohexane/AcOEt : 1-1); 1H NMR (200 MHz, CDCl$_3$) δ 7.59–7.32 (m, 2H), 7.27–7.10 (m, 2H), 6.71 (s, 1H), 5.54 (t, J = 5.4 Hz, 1H), 5.37 (t, J = 5.3 Hz, 1H), 5.08 (d, J = 5.4 Hz, 1H), 4.39 (dd, J = 11.6 Hz, J' = 3.2 Hz, 1H), 4.33–4.25 (m, 1H), 4.14 (dd, J = 11.7 Hz, J' = 4.4 Hz, 1H), 2.04 (s, 3H), 2.02 (s, 3H), 2.00 (s, 3H); 13C NMR (50 MHz, CDCl$_3$) δ 170.6, 169.7, 169.6, 155.2, 152.6, 127.6, 124.9, 123.0, 121.3, 111.5, 106.0, 79.6, 79.5, 73.4, 71.7, 63.4, 20.8, 20.6, 20.5. HRMS Calcd. for C$_{19}$H$_{21}$O$_5$: 377.1158, Found: 377.1231.
Photophysics

General procedures.

All solvents for absorption and fluorescence experiments were of spectroscopic grade. Absorption spectra were recorded on a Cary 4 spectrophotometer (Varian) using quartz cells of 1 cm path length. Fluorescence spectra were recorded on FluoroMax 4.0 spectrofluorometer (Jobin Yvon, Horiba). Wavelengths used as the excitation wavelengths are highlighted in table 3. Stock solutions of the solvatofluorochromic dyes were prepared using 1,4- doxane. The samples used for spectroscopic measurements contained $\approx 0.1\% \text{ v/v}$ of the stock solvent. For fluorescence quantum yield measurements, the absorbance of the corresponding solution was kept below 0.05.
Copies of 1H and 13C NMR spectra

1H NMR (400 MHz, CDCl$_3$) spectrum of 4a.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4a.
1H Noesy correlation for β-configuration.

Cosy spectrum of 4a.

Noesy spectrum of 4a.
Noesy spectrum of 4a (4 – 6 ppm).

Selective noesy spectrum of 4a (5.25 ppm, β-anomer).
1H NMR (200 MHz, CDCl$_3$) spectrum of 4b.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4b.
1H NMR (400 MHz, CDCl$_3$) spectrum of 4c.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4c.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4d.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4d.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4e.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4e.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4f.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4f.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4g.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4g.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4h.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4h.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4i.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4i.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4j.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4j.
1H NMR (200 MHz, CDCl$_3$) spectrum of 4k.

13C NMR (50 MHz, CDCl$_3$) spectrum of 4k.
1H NMR (400 MHz, CDCl$_3$) spectrum of 5a.

13C NMR (50 MHz, CDCl$_3$) spectrum of 5a.
COSY spectrum of 5a.

NOESY spectrum of 5a.
1H NMR (200 MHz, CDCl$_3$) spectrum of 5b.

13C NMR (50 MHz, CDCl$_3$) spectrum of 5b.
1H NMR (400 MHz, CDCl$_3$) spectrum of 5c.

13C NMR (101 MHz, CDCl$_3$) spectrum of 5c.
1H NMR (400 MHz, CDCl$_3$) spectrum of 5d.

13C NMR (50 MHz, CDCl$_3$) spectrum of 5d.
1H NMR (200 MHz, CDCl$_3$) spectrum of 5e.

13C NMR (50 MHz, CDCl$_3$) spectrum of 5e.
Copies of HRMS spectra

HRMS (ESI-MS) spectrum of 4a.

HRMS (ESI-MS) spectrum of 4b.
HRMS (ESI-MS) spectrum of 4c.

HRMS (ESI-MS) spectrum of 4d.
HRMS (ESI-MS) spectrum of 4e.

HRMS (ESI-MS) spectrum of 4f.
HRMS (ESI-MS) spectrum of 4g.

HRMS (ESI-MS) spectrum of 4h.
HRMS (ESI-MS) spectrum of 4l.

HRMS (ESI-MS) spectrum of 4j.
HRMS (ESI-MS) spectrum of 4k.

HRMS (ESI-MS) spectrum of 5a.
HRMS (ESI-MS) spectrum of 5b.

HRMS (ESI-MS) spectrum of 5c.
HRMS (ESI-MS) spectrum of 5d.

HRMS (ESI-MS) spectrum of 5e.
Figure S1. Fluorescence emission spectra of 5c in different concentrations in cyclohexane.