A Diastereoselective Construction of functionalized dihydro-pyridazine based Spirooxindole Scaffold via C-3 Umpolung of Isatin N,N'-Cyclic Azomethine Imine

F. Matloubi-Mogaddam*, M. Eslami, A. Siahpoosh, H. Golfam

Laboratory of Organic Synthesis and Natural Products, Department of Chemistry,
Sharif University of Technology, Azadi Street, PO Box 111559516
Tehran, Iran

E-mail Address: matloubi@sharif.edu

CONTENTS

General data .. II
Typical procedure for the synthesis of 1a-i ..II
Typical procedure for the synthesis of 2a-c ..II
Typical procedure for the synthesis of 4a-p ..II
Spectroscopic characterization of product 4a-p .. II-IV
1HNMR and 13CNMR spectra of the products 4a-p ... V-XIX
1. General data

Materials and methods

All solvents and starting materials were purchased from Merck and Sigma-Aldrich used without any additional purification. Analytical TLC was carried out using Merck 0.2 mm silica gel 60 F-254 Al-plates. 1H NMR and 13C NMR spectra were recorded on a Bruker Avance DRX-500 machine using DMSO-d6 as solvent and TMS as an internal standard at room temperature (DMSO-d6, 1HNMR: $\delta=2.50$ ppm and 13CNMR: $\delta=39.52$ ppm). Chemical shifts were reported in ppm scale. FT-IR spectra of samples were obtained on ABB Bomem MB100 spectrometer with potassium bromide (KBr) pellets. Melting points were determined using an Electrothermal 9100 apparatus and are uncorrected. CHN analysis was done by LECO Truspec. X-ray diffraction was carried out on a STOE IPDS 2T diffractometer with graphite monochromated MoKα radiation. A single crystal suitable for X-ray analysis was obtained from DMSO solution.

2. Typical procedure for the synthesis of 1a-c

Isatin N,N'-cyclic azomethine imine 1,3-dipoles were synthesized according to the previously reported method.1 To the solution of hydrazine monohydrate (2.42 mL, 50 mmol) in 30 mL anhydrous ethanol cooled to 0 °C was added ethyl acrylate (5.85 mL, 55 mmol) dropwise over 1h period. Then the reaction mixture was heated under reflux condition for 8 h and the volatile components and solvent were removed under reduced pressure. Finally, the pyrazolidin-3-one was obtained as yellow oil, which was dissolved in 20 mL of anhydrous ethanol, and N-allyl isatin (4.67 g, 25 mmol) was added. The crude reaction mixture was stirred overnight at room temperature. After completion of reaction, the solid product was collected by filtration and purified by flash chromatography eluting with MeOH/CH$_2$Cl$_2$ (1:100) to afford 1a as a red solid (1.17 g, 4.6 mmol, 46%).

Data for 2-((1 benzyl-2-oxoindolin-3-ylidene)-5-oxopyrazolidin-2-ium-1-ide 1b:

Red solid; m.p 198-200 °C; 1H NMR (500 MHz, DMSO-d$_6$) δ 2.74 (2H, t, $J = 7.0$ Hz, CH$_2$), 4.99 (2H, t, $J = 7$ Hz, CH$_2$), 5.02 (2H, s, N-CH$_2$), 7.06 (1H, d, $J = 8.0$ Hz, H-Ar), 7.16 (1H, t, $J = 7.5$ Hz, H-Ar), 7.34 (6H, m, H-Ar), 8.02 (1H, d, $J = 7.5$ Hz, H-Ar).

3. Typical procedure for the synthesis of 2a-i

In a 25 mL round bottom flask equipped with a magnetic bar, aldehyde (3 mmol), malononitrile (238 mg, 3.6 mmol), and morpholine (20 µl) were added to ethanol (5 mL). Then, the reaction mixture was stirred at room temperature until completion of the reaction. The reaction progress was monitored by TLC (EtOAc/n-hexane, 1:3) as well as precipitating out of the products from the reaction mixture. After completion of the reaction, the solid products 2a-i were filtered, washed with cold ethanol (2 mL) to obtain essentially pure products.

4. Typical procedure for the synthesis of 4a-p

A reaction vial was charged with a mixture of isatin N,N'-cyclic azomethine imine 1,3-dipoles (0.5 mmol), 2-arylidemalononitrile (0.5 mmol), DABCO (20 mol%), 1.0 ml DCM as solvent and stirred at room temperature for 12h. The progress of the reaction was monitored by TLC (1:3 n-hexan:Ethyl acetate). After completion of the reaction, the organic
5. Spectra Data for compounds 4a-p

Data for 1-allyl-8'-amino-1',2-dioxo-6'-phenyl-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyrazidine]-7'-carbonitrile 4a:

White solid; Yield 90% (184 mg); m.p 250-252 °C; 1H NMR (500 MHz, DMSO-d$_6$) δ 3.83 (2H, AB$_q$), 4.42 (1H, d, J = 17.0 Hz), 4.74 (1H, s), 4.82 (1H, d, J = 10.0 Hz), 5.30 (1H, m), 5.69 (1H, s), 6.74 (1H, d, J = 7.0 Hz, H-Ar), 6.88 (2H, br s, H-Ar), 7.12 (2H, br s, H-Ar), 7.16 (1H, d, J = 6.0 Hz, H-Ar), 7.27 (1H, t, J = 7.0 Hz, H-Ar), 7.33 (1H, br s, H-Ar), 7.39 (1H, t, J = 7.5 Hz, H-Ar), 7.74 (2H, br s, NH$_2$), 7.83 (1H, d, J = 7.0 Hz, H-Ar); 13C NMR (125 M Hz, DMSO-d$_6$) δ 41.6, 46.5, 58.5, 67.1, 101.2, 110.2, 117.1, 119.5, 121.9, 123.7, 125.6, 128.4, 130.0, 130.9, 131.9, 134.3, 142.5, 143.2, 150.1, 165.3, 169.0; IR (KBr) ν (cm$^{-1}$) 3452, 3304, 3145, 3078, 2875, 2191, 1689, 1625, 1579; HRMS calcd. for (C$_{24}$H$_{19}$N$_3$O$_2$+H)$^+$, 410.1617, found 410.1606.

Data for 1-allyl-8'-amino-1',2-dioxo-6'-(p-tolyl)-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyrazidine]-7'-carbonitrile 4b:

White solid; Yield 88% (186 mg); m.p 253-255 °C; 1H NMR (500c MHz, DMSO-d$_6$) δ 2.17 (3H, s, CH$_3$), 3.93 (2H, AB$_q$, N-CH$_2$), 4.34 (1H, d, J = 16.5 Hz), 4.68(1H, s), 4.84 (1H, d, J = 9.5 Hz), 5.31 (1H, m), 5.68 (1H, s), 6.74 (3H, m, H-Ar), 6.92 (2H, m, H-Ar), 7.28 (2H, m, H-Ar), 7.39 (1H, s), 7.72 (2H, br s, NH$_2$), 7.82 (1H, d, J = 6.0 Hz, H-Ar); 13C NMR (125 M Hz, DMSO-d$_6$) δ 20.0, 41.5, 46.2, 58.7, 67.1, 101.2, 110.3, 116.8, 119.5, 122.2, 123.7, 125.8, 128.8, 129.9, 130.9, 131.3, 131.8, 137.7, 142.5, 143.4, 150.0, 165.3, 169.1; IR (KBr) ν (cm$^{-1}$) 3451, 3354, 3176, 2942, 2770, 2192, 1675, 1667; HRMS calcd. for (C$_{25}$H$_{21}$N$_3$O$_2$+H)$^+$, 424.1773, found 424.1761.

Data for 1-allyl-8'-amino-1',2-dioxo-6'-(m-tolyl)-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyrazidine]-7'-carbonitrile 4c:

White solid; Yield 91% (192 mg); m.p 254-258 °C; 1H NMR (500 MHz, DMSO-d$_6$) δ 2.09 (3H, s, CH$_3$), 3.92 (2H, AB$_q$,CH$_2$), 4.42 (1H, d, J = 17.5 Hz), 4.68 (1H, s), 4.86 (1H, d, J = 11.5 Hz), 5.32 (1H, m), 5.68 (1H, d, J = 4.0 Hz), 6.68 (2H, m, H-Ar), 6.74 (2H, d, J = 7.5 Hz, H-Ar), 6.97 (2H, s, H-Ar), 7.27 (1H, s, H-Ar), 7.26 (1H, t, J = 7.5 Hz, H-Ar), 7.32 (1H, d, J = 3.5 Hz), 7.39 (1H, t, J = 7.5 Hz, H-Ar), 7.73 (2H, br s, NH$_2$), 7.82 (1H, d, J = 7.5 Hz, H-Ar); 13C NMR (125 MHz, DMSO-d$_6$) δ 21.3, 41.6, 46.6, 58.5, 67.1, 101.1, 110.2, 116.9, 119.5, 122.1, 123.7, 125.8, 127.3, 128.0, 129.0, 130.5, 131.0, 131.8, 134.2, 137.3, 142.5, 143.4, 150.1, 165.3, 169.3; IR (KBr) ν (cm$^{-1}$) 3371, 3331, 3196, 2187, 1726, 1685, 1631, 1581, 1188; HRMS calcd. for (C$_{22}$H$_{21}$N$_3$O$_2$+H)$^+$, 424.1774, found 424.1773.

Data for 1-allyl-8'-amino-6'-(4-methoxyphenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyrazidine]-7'-carbonitrile 4d:

White solid; Yield 89% (202 mg); m.p 240-242 °C; 1H NMR (500 MHz, DMSO-d$_6$) δ 3.64 (3H, s, OCH$_3$), 3.96 (2H, AB$_q$, N-CH$_2$), 4.43 (1H, d, J = 17.5 Hz), 4.68 (1H, s), 4.86 (1H, d, J = 10.0 Hz), 5.35 (1H, m), 5.68 (1H, d, J=2.5 Hz), 6.68 (2H, m, H-Ar), 6.78 (3H, m, H-Ar), 7.26 (1H, d, J = 7.5 Hz, H-Ar), 7.27 (1H, s), 7.40 (1H, t, J = 7.5 Hz, H-Ar), 7.71 (2H, br s, NH$_2$), 7.81 (1H, d, J = 6.0 Hz, H-Ar); 13C NMR (125 M Hz, DMSO-d$_6$) δ 36.0, 41.6, 45.9, 55.4, 67.2, 101.1, 110.3, 113.7, 117.0, 119.4, 122.3, 123.7, 125.7, 126.1, 130.1, 131.1, 131.8,
142.5, 143.4, 150.0, 159.4, 165.3, 169.2; IR (KBr) ν (cm\(^{-1}\)) 3377, 3302, 3238, 3165, 3076, 2962, 2193, 1737, 1697, 1608, 1577; HRMS calcd. for \((C_{2}H_{5}N_{3}O_{5}+H)^{+}\), 440.1728, found 440.1712.

Data for 1-allyl-8'-amino-6'-[(2-methoxyphenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4e:

white solid; Yield 87% (197 mg); m.p 244-246 °C; \(^1\)H NMR (500 MHz, DMSO-\(d_{6}\)) δ 3.68 (3H, s, OCH\(_3\)), 4.00 (2H, AB\(_{q}\), N-CH\(_{2}\)), 4.62 (1H, d, J = 17.0 Hz), 4.94 (1H, d, J = 10.5 Hz), 5.10 (1H, s), 5.43 (1H, m), 5.66 (1H, d, J = 3.5 Hz), 6.71 (1H, d, J = 8.0 Hz, H-Ar), 6.77 (1H, d, J = 8.0 Hz H-Ar), 7.85 (1H, t, J = 7 Hz, H-Ar), 7.13-7.21 (3H, m, H-Ar), 7.27 (1H, d, J = 3.5 Hz), 7.35 (1H, t, J = 7.5 Hz, H-Ar), 7.64 (1H, d, J = 7.0 Hz, H-Ar), 7.72 (2H, s br, NH\(_2\)); \(^{13}\)C NMR (125 M Hz, DMSO-d\(_{6}\)) δ 37.9, 41.8, 55.3, 58.4, 66.9, 100.9, 109.9, 111.0, 117.4, 119.5, 120.5, 122.2, 122.5, 123.9, 126.3, 129.6, 130.0, 131.2, 131.4, 142.4, 142.9, 150.2, 157.4, 165.3, 169.1; IR (KBr) ν (cm\(^{-1}\)) 3437, 3288, 3147, 3084, 2968, 2846, 2191, 1726, 1685, 1625, 1606, 1182; HRMS calcd. for \((C_{2}H_{12}N_{3}O_{5}+H)^{+}\), 440.1728, found 440.1715.

Data for 1-allyl-8'-amino-6'-[(4-chlorophenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4f:

white solid; Yield 77% (170 mg); m.p 260-262 °C; \(^1\)H NMR (500 MHz, DMSO-\(d_{6}\)) δ 3.96 (2H, AB\(_{q}\), N-CH\(_{2}\)), 4.42 (1H, d, J = 16.5 Hz), 4.78 (1H, br s), 4.88 (1H, br s), 5.36 (1H, br s), 5.69 (1H, br s), 6.79-76.91 (3H, m, H-Ar), 7.21-7.41 (5H, m, H-Ar), 7.78 (3H, m, H-Ar); \(^{13}\)C NMR (125 M Hz, DMSO-\(d_{6}\)) δ 41.5, 45.9, 57.8, 66.9, 101.3, 110.4, 116.9, 119.4, 121.8, 123.9, 125.8, 128.3, 130.9, 131.8, 132.0, 133.2, 133.5, 142.7, 143.2, 150.2, 165.3, 168.9; IR (KBr) ν (cm\(^{-1}\)) 3361, 3378, 3103, 2189, 1726, 1683, 1629, 1579, 1197.759; HRMS calcd. for \((C_{2}H_{13}N_{3}O_{5}Cl+Na)^{+}\), 466.1052, found 466.0982.

Data for 1-allyl-8'-amino-6'-[(2-chlorophenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4g:

white solid; Yield 83% (184 mg); m.p 262-264 °C; \(^1\)H NMR (500 MHz, DMSO-\(d_{6}\)) δ 4.09 (2H, AB\(_{q}\), N-CH\(_{2}\)), 4.75 (1H, d, J = 17.5 Hz), 5.01 (1H, d, J = 10.5 Hz), 5.11 (1H, s), 5.53 (1H, m), 5.70 (1H, d, J = 3.5 Hz), 6.86 (1H, d, J = 8.0 Hz, H-Ar), 7.19 (1H, t, J = 7.5 Hz, H-Ar), 7.24 (2H, m, H-Ar), 7.33 (2H, m, H-Ar), 7.40 (1H, t, J = 8 Hz, H-Ar), 7.71 (1H, d, J = 7.5 Hz, H-Ar), 7.83 (2H, br s, NH\(_2\)); \(^{13}\)C NMR (125 MHz, DMSO-\(d_{6}\)) δ 42.0 42.4, 57.9, 66.7, 101.1, 110.3, 117.8, 119.2, 121.8, 123.5, 126.3, 127.6, 129.7, 130.2, 131.1, 131.4, 131.9, 132.6, 134.3, 142.7, 142.7, 150.1, 165.3, 168.9; IR (KBr) ν (cm\(^{-1}\)) 3444, 3290, 3147, 2189, 1724, 1625, 1579, 1180, 763; HRMS calcd. for \((C_{2}H_{13}N_{3}O_{5}Cl+Na)^{+}\), 466.1041, found 466.0982.

Data for 1-allyl-8'-amino-6'-[(2,4-dichlorophenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4h:

white solid; Yield 86% (206 mg); m.p 250-252 °C; \(^1\)H NMR (500 MHz, DMSO-\(d_{6}\)) δ 4.12 (2H, AB\(_{q}\), N-CH\(_{2}\)), 4.78 (1H, d, J = 17 Hz), 5.03 (2H, m), 5.59 (1H, m), 5.70 (1H, d, J = 3.0 Hz), 6.92 (1H, d, J = 8.0 Hz, H-Ar), 7.20 (1H, t, J = 7.0 Hz, H-Ar), 7.39 (5H, m, H-Ar), 7.68 (1H, d, J = 7.0 Hz, H-Ar), 7.88 (2H, br s, NH\(_2\)); \(^{13}\)C NMR (125 MHz, DMSO-d\(_{6}\)) δ 42.1, 42.2, 57.4, 66.5, 101.3, 110.4, 117.7, 119.1, 121.8, 123.6, 126, 127.9, 129.0, 131.0, 131.9, 132.0, 132.8, 134.0, 135.3, 142.5, 142.8, 150.1, 165.3, 168.6; IR (KBr) ν (cm\(^{-1}\)) 3454, 3288, 3142, 3086, 2191, 1726, 1716, 1629, 1577, 1190; HRMS calcd. for \((C_{2}H_{13}N_{3}O_{5}Cl_{2}+H)^{+}\), 5
Data for 1-allyl-8'-amino-1',2-dioxo-6'-(thiophen-2-yl)-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4:
white solid; Yield 84% (174 mg); m.p 244-245 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 3.98 (2H, ABq, N-CH₂), 4.62 (1H, d, J = 17.5 Hz), 4.95 (1H, d, J = 10.5 Hz), 5.08 (1H, s), 5.42 (1H, m), 5.69 (1H, J = 3.5 Hz), 6.67 (1H, s), 6.83 (2H, m, H-Ar), 7.30 (1H, t, J = 7.5 Hz, H-Ar), 7.32 (2H, m, H-Ar), 7.44 (1H, t, J = 8.0 Hz, H-Ar), 7.74 (2H, br s, NH₂), 7.79 (1H, d, J = 7.5 Hz , H-Ar); ¹³C NMR (125 MHz, DMSO-d₆) δ 41.6, 41.9, 58.9, 66.9, 101.3, 110.4, 117.7, 119.3, 122.3, 123.9, 125.7, 126.7, 126.8, 128.5, 131.1, 132.0, 136.8, 142.9, 143.7, 149.8, 165.3, 168.9; IR (KBr) ν 3388, 3284, 2191, 1720, 1718, 1625, 1606, 1188, 765; HRMS calcd. for (C₁₂H₁₀N₃O₂S)⁺, found 416.1186, 416.1169.

Data for 8'-amino-1-benzyl-1',2-dioxo-6'-phenyl-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4j:
White solid; Yield 91% (208 mg); m.p 281-282 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 4.54 (2H, ABq, N-CH₂), 4.81 (1H, s), 5.73 (1H, s), 6.63 (1H, d, J = 7.5 Hz), 6.67 (2H, d, J = 5.5 Hz, H-Ar), 6.96 (2H, br s, H-Ar), 7.12-7.33 (9H, m, H-Ar), 7.74 (2H, br s, NH₂), 7.87 (1H, d, J = 7.0 Hz, H-Ar); ¹³C NMR (125 MHz, DMSO-d₆) δ 42.9, 46.2, 58.7, 67.2, 101.5, 110.4, 119.5, 121.9, 124.0, 126.0, 126.9, 127, 128.4, 128.5, 128.9, 130.1, 132.0, 134.2, 135.1, 142.6, 143.3, 149.9, 165.4, 169.4; IR (KBr) ν (cm⁻¹) 3390, 3284, 3143, 3062, 2189, 1728, 1720, 1679, 1197, 767; HRMS calcd. for (C₁₂H₁₁N₂O₂S)⁺, 460.1773, found 460.1768.

Data for 8'-amino-1-benzyl-1',2-dioxo-6'-(p-tolyl)-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4k:
White solid; Yield 90% (213 mg); m.p 286-287 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 2.22 (3H, s, CH₃), 4.56 (2H, ABq, N-CH₂), 4.75 (1H, s), 5.71 (1H, d, J = 3.5 Hz), 6.65 (1H, d, J = 7.5 Hz, H-Ar), 6.72 (2H, d, J = 7.5 Hz, H-Ar), 6.83 (2H, br s, H-Ar), 7.16 (2H, t, J = 7.5 Hz, H-Ar), 7.20-7.26 (3H, m, H-Ar), 7.33 (1H, t, J = 7.5 Hz, H-Ar), 7.70 (2H, br s, NH₂), 7.85 (1H, t, J = 7 Hz); ¹³C NMR (125 M Hz, DMSO-d₆) δ 21.1, 43.0, 45.8, 58.9, 67.2, 101.4, 110.4, 119.5, 122.1, 124.0, 125.9, 127.1, 127.7, 128.7, 129.0, 130.0, 131.3, 131.9, 135.3, 137.7, 142.5, 143.4, 150.0, 165.4, 169.4; IR (KBr) ν (cm⁻¹) 3388, 3282, 2187, 1724, 1722, 1627, 1573, 1191,759; HRMS calcd. for (C₁₂H₁₂N₂O₂S)⁺, 474.1930, found 474.1923.

Data for 8'-amino-1-benzyl-1',2-dioxo-6'-(m-tolyl)-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4l:
White solid; Yield 89% (210 mg); m.p 254-256 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 2.09 (3H, s, CH₃), 4.69 (2H, ABq, CH₂), 5.18 (1H, s), 5.72 (1H, s), 6.80 (1H, d, J = 7.5 Hz, H-Ar), 6.97 (2H, br s, H-Ar), 7.19 (2H, m, H-Ar), 7.24 (4H, m, H-Ar), 7.29 (1H, br s), 8.35 (2H, t, J = 8.0 Hz, H-Ar), 7.76 (3H, m, H-Ar, NH₂); ¹³C NMR (125 MHz, DMSO-d₆) δ 31.1, 42.1, 43.3, 58.2, 66.8, 101.4, 110.3, 119.2, 121.5, 123.6, 126.7, 127.5, 127.7, 127.9, 129.0, 129.8 130.2, 131.4, 132.1, 132.5, 134.2, 135.4, 142.6, 142.8, 150.0, 165.4, 169.3; IR (KBr) ν (cm⁻¹) 3367, 3298, 3142, 2187, 1726, 1687, 1631, 1608, 1191; El-MS: m/z (%) = 474.60.

Data for 8'-amino-1-benzyl-6'-(2-methoxyphenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4m:
White solid; Yield 87% (213 mg); m.p 250-252 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 3.37 (3H, s, OCH₃), 4.60 (2H, ABq, N-CH₂), 5.08 (1H, s), 5.70 (1H, d, J = 3.5 Hz), 6.63 (1H, d, J
Data for 8'-amino-1-(4-chlorobenzyl)-1',2-dioxo-6'-phenyl-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4n:
White solid; Yield 85% (210 mg); m.p 256–258 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 4.54 (2H, ABq, N-CH₂), 4.81 (1H, s), 5.73 (1H, s), 6.67 (3H, t, J = 9.0 Hz, H-Ar), 6.94 (2H, br s, Hz, H-Ar), 7.12 (2H, br s, H-Ar), 7.26 (5H, m, H-Ar), 7.35 (1H, t, J = 8.0 Hz, H-Ar), 7.75 (2H, br s, NH₂), 7.87 (1H, d, J = 7.5 Hz, H-Ar); ¹³C NMR (125 MHz, DMSO-d₆) δ 42.3, 46.2, 58.6, 67.7, 101.6, 110.3, 119.5, 121.1, 124.0, 126.1, 128.4, 128.5, 128.8, 129.1, 130.1, 132.2, 132.0, 132.7, 132.4, 142.7, 143.1, 150.1, 165.4, 169.3; IR (KBr) ν (cm⁻¹) 3446, 3298, 3126, 2196, 1732, 1685, 1629, 1579, 1188, 758, EI-MS: m/z (%) = 493.50.

Data for 8'-amino-1-(4-chlorobenzyl)-6'-(4-chlorophenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4o:
White solid; Yield 90% (237 mg); m.p 214–216 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 4.58 (2H, ABq, N-CH₂), 4.84 (1H, s), 5.74 (1H, d, J = 3.5 Hz), 6.78 (3H, m, H-Ar), 6.92 (2H, br s, H-Ar), 7.17 (2H, d, J = 7.0 Hz, H-Ar), 7.27 (4H, m, H-Ar), 7.39 (1H, t, J = 7.5 Hz, H-Ar), 7.78 (2H, br s, NH₂), 7.86 (1H, d, J = 7.5 Hz, H-Ar); ¹³C NMR (125 MHz, DMSO-d₆) δ 42.4, 45.5, 58.0, 66.9, 101.7, 110.4, 119.4, 121.8, 124.2, 126.1, 128.5, 128.7, 129.3, 131.9, 132.2, 132.50, 133.3, 133.4, 143.5, 142.8, 143.1, 150.2, 165.4, 168.1; IR (KBr) ν (cm⁻¹) 3363, 3273, 3143, 3070, 2187, 1722, 1683, 1633, 1571, 1191, 754, 599, EI-MS: m/z (%) = 527.60.

Data for 8'-amino-1-(4-chlorobenzyl)-6'-(2-chlorophenyl)-1',2-dioxo-1'H,6'H-spiro[indoline-3,5'-pyrazolo[1,2-a]pyridazine]-7'-carbonitrile 4p:
White solid; Yield 86% (226 mg); m.p 262–264 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 4.70 (2H, ABq, N-CH₂), 5.14 (1H, s), 5.74 (1H, d, J = 4.0 Hz), 6.94 (1H, d, J = 8.0 Hz, H-Ar), 7.04 (2H, d, J = 8.5 Hz, H-Ar), 7.22 (2H, m, H-Ar), 7.32 (3H, m, H-Ar), 7.40 (1H, t, J = 7.5 Hz, H-Ar), 7.43 (1H, d, J = 2.0 Hz), 7.76 (1H, d, J = 7.0 Hz, H-Ar), 7.86 (2H, br s, NH₂); ¹³C NMR (125 MHz, DMSO-d₆) δ 41.7, 42.7, 57.6, 66.5, 101.6, 110, 119.1, 121.4, 123.8, 126.8, 128.0, 128.9, 129.1, 129.9, 131.7, 132.2, 132.2, 132.7, 132.9, 134.0, 134.6, 135.1, 142.6, 142.9, 150.1, 165.4, 169.1; IR (KBr) ν (cm⁻¹) 3375, 3290, 3176, 2925, 2191, 1728, 1720, 1641, 1608, 1191, 837, 754, EI-MS: m/z (%) = 527.70.
1H and 13C NMR spectra of compound 4a:
1H and 13C NMR spectra of compound 4b:
1H and 13C NMR spectra of compound 4c:
1H and 13C NMR spectra of compound 4d:
1H and 13C NMR spectra of compound 4e:
1H and 13C NMR spectra of compound 4f:
1H and 13C NMR spectra of compound 4g:
1H and 13C NMR spectra of compound 4h:
1HNMR and 13CNMR spectra of compound 4i:
1H and 13C NMR spectra of compound 4j:
1HNMR and 13CNMR spectra of compound 4k:
1H and 13C NMR spectra of compound 4l:
1H and 13C NMR spectra of compound 4m:
1H and 13C NMR spectra of compound 4n:
1H and 13C NMR spectra of compound 4o:
1H and 13C NMR spectra of compound 4p: