Supporting Information

Investigating dynamics of excitons in monolayer WSe$_2$
before and after organic super acid treatment

Xin Chen$^{#, a}$, Zhuo Wang$^{#, b,c,d}$, Lei Wang$^{#, a,c}$, Hai-Yu Wang$^{*, a,c}$, Yuan-Yuan Yuea, Hai Wanga, Xue-Peng Wanga, Andrew T. S. Weed, Cheng-Wei Qiuc, and Hong-Bo Suna,e

aState Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China. bSZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China. cDepartment of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore. dDepartment of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore. eState Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China.
Figure S1. Measurements of organic super acid treated monolayer WSe\textsubscript{2} (osa-monolayer) by femtosecond pump-probe system. (a) Transient absorption (TA) spectrum of osa-monolayer WSe\textsubscript{2} excited under 400 nm pump pulse with pump fluence of 7.4 \(\mu \text{J cm}^{-2} \). (b) TA spectrum of osa-monolayer WSe\textsubscript{2} excited under 400 nm pump pulse with pump fluence of 76 \(\mu \text{J cm}^{-2} \). (c) TA spectrum of osa-monolayer WSe\textsubscript{2} excited under 610 nm pump pulse with pump fluence of 0.1 \(\mu \text{J cm}^{-2} \). (d) TA spectrum of osa-monolayer WSe\textsubscript{2} excited under 610 nm pump pulse with pump fluence of 0.52 \(\mu \text{J cm}^{-2} \). (e) TA spectrum of osa-monolayer WSe\textsubscript{2} excited under 730 nm pump pulse with pump fluence of 0.12 \(\mu \text{J cm}^{-2} \). (f) TA spectrum of osa-monolayer WSe\textsubscript{2} excited under 730 nm pump pulse with pump fluence of 0.14 \(\mu \text{J cm}^{-2} \).
Figure S2. Measurements of monolayer WSe$_2$ without organic super acid treated by femtosecond pump-probe system. TA spectrum of monolayer WSe$_2$ excited under 610 nm pump pulse with pump fluence of 4.4 μJ cm$^{-2}$.
Figure S3. Measurements of bulk WSe$_2$ by femtosecond pump-probe system. (a) TA spectrum of bulk WSe$_2$ excited under 400 nm pump pulse with pump fluence of 71 μJ cm$^{-2}$. (b) TA spectrum of bulk WSe$_2$ excited under 400 nm pump pulse with pump fluence of 141 μJ cm$^{-2}$. (c) TA spectrum of bulk WSe$_2$ excited under 800 nm pump pulse with pump fluence of 22 μJ cm$^{-2}$. (d) TA spectrum of bulk WSe$_2$ excited under 800 nm pump pulse with pump fluence of 55 μJ cm$^{-2}$.
Figure S4. The normalized dynamics of A-exciton for bulk WSe$_2$ under 800 nm excitation with three pump fluences. Green line: pump fluence of 11 μJ cm$^{-2}$, purple line: pump fluence of 22 μJ cm$^{-2}$, red line: pump fluence of 54 μJ cm$^{-2}$.
Table S1. The enlargement factor of GSB signal of A exciton for monolayer WSe$_2$ after organic super acid treatment under different pump fluences.

<table>
<thead>
<tr>
<th>610 nm excitation</th>
<th>osa-monolayer WSe$_2$</th>
<th>Untreated monolayer WSe$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔO.D. intensity ($\times 10^2$)</td>
<td>0.23</td>
<td>0.84</td>
</tr>
<tr>
<td>Enlargement factor</td>
<td>48</td>
<td>53</td>
</tr>
</tbody>
</table>