Supporting Information

Narrow-gap physical vapour deposition synthesis of ultrathin SnS$_{1-x}$Se$_x$ ($0 \leq x \leq 1$)

Two-dimensional Alloys with unique polarized Raman spectra and high
(opto)electronic properties.

Wei Gao,a Yongtao Li,a Jianhua Guo,c Muxun Ni,a Ming Liao,a Haojie Moa and Jingbo Lia,b

E-mail: 979139835@qq.com, jbli@semi.ac.cn

aCollege of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, People’s Republic of China

bState Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People’s Republic of China.

cSchool of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China.

Fig. S1 Optical images of the SnS$_{1-x}$Se$_x$ alloyed nanosheets by different wafer methods: (a) one wafer method. (b) two wafers covered each other.
Fig. S2 (a) Schematic diagram for the traditional growth of 2D SnS$_{1-x}$Se$_x$ alloyed nanosheets. The samples were grown on the top of the SiO$_2$/Si substrate. (b) Enlarged image of the black ellipse, showing the detailed orientation growth of the alloyed sample.

Fig. S3 SEM-EDS of the SnS$_{0.5}$Se$_{0.5}$ alloyed nanosheets
Table S1. The calculation result extracted from the corresponding EDS spectrum in Fig. S4 SEM-EDS of the SnS$_{0.75}$Se$_{0.25}$ alloyed nanosheets

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic (%)</th>
<th>Theoretical Atomic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>22.02</td>
<td>20</td>
</tr>
<tr>
<td>Se</td>
<td>20.15</td>
<td>20</td>
</tr>
<tr>
<td>S/Se ratio</td>
<td>1.09</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. S4 SEM-EDS of the SnS$_{0.75}$Se$_{0.25}$ alloyed nanosheets

Table S2. The calculation result extracted from the corresponding EDS spectrum in Figure S3.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic (%)</th>
<th>Theoretical Atomic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>32.79</td>
<td>30</td>
</tr>
<tr>
<td>Se</td>
<td>10.08</td>
<td>10</td>
</tr>
<tr>
<td>S/Se ratio</td>
<td>3.25</td>
<td>3</td>
</tr>
</tbody>
</table>
Table S3. The calculation result extracted from the corresponding EDS spectrum in Figure S4.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic (%)</th>
<th>Theoretical Atomic (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>12.23</td>
<td>10</td>
</tr>
<tr>
<td>Se</td>
<td>28.94</td>
<td>30</td>
</tr>
<tr>
<td>S/Se ratio</td>
<td>0.42</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Fig. S6 SEM images of the SnS$_{1-x}$Se$_x$ alloyed nanosheets via two wafers method (a) Trapezoid. (b) Square. (c) Rectangle.

Fig. S7 (a) Transfer characteristic curve of the device under drain voltage of 1 V under dark condition. Inset: the optical image of the device, scale bar: 10 μm. (b) Output characteristic curves of the device under different V_g values (from 80 V to -80 V using step of 40 V).
Fig. S8 Macroscopic scheme of NGPVD method, showing the detailed orientation growth of the alloyed sample.

Fig. S9 Microcosmic scheme of NGPVD method, showing the detailed orientation growth of the alloyed sample.

Fig. S10 Normalized Raman spectra of the SnS$_{0.5}$Se$_{0.5}$ nanosheets with different
Fig. S11 The microcosmic scheme of FETs devices based on SnS$_{1-x}$Se$_x$ alloyed samples. (a) and (b) for ultrathin sample. (c) and (d) for thicker sample (larger than 25 nm).