Supporting Information

Monodisperse and Brightly Luminescent CsPbBr₃/Cs₄PbBr₆ Perovskite Composite Nanocrystals

Tongtong Xuan,‡^a Sunqi Lou, ‡^{a,b} Junjian Huang,^a Luyu Cao,^a Xianfeng Yang,^c Huili Li,^b and Jing Wang^{*a}

^a Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry,
 State Key Laboratory of Optoelectronic Materials and Technologies, School of
 Chemistry, School of Materials Science and Engineering, Sun Yat-Sen University,
 Guangzhou, Guangdong 510275, China.

^b Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China.

^c Analytical and Testing Centre, South China University of Technology, Guangzhou, Guangdong 510640, China.

Corresponding Author

*Email: ceswj@mail.sysu.edu.cn (J.W.)

‡ These authors contributed equally to this work.

Experimental Section

Chemicals.

Cesium bromide (CsBr, 99.9%, Aldrich), lead(II) bromide (PbBr₂, 98%, Aldrich), 2-Methylimidazole (MeIM, 98%, Aladdin), oleic acid (OA, 90%, Aldrich), oleylamine (OAm, 70%, Aldrich), *N*,*N*-dimethylformamide (DMF, 99.8%, Aladdin), cyclohexane (>99.5%, Aladdin), toluene (TOL, 99.5%, Sinopharm Chemical Reagent Co., Ltd, China). All reagents were used as received without further purification.

Synthesis of CsPbBr₃ embedded in Cs₄PbBr₆ composite (CPB₁₁₃/CPB₄₁₆) NCs.

Typically, PbBr₂ (0.1 mmol), CsBr (0.4 mmol), and MeIm (0.1mmol) were added to a mixture solution of 0.2 mL OA, 0.5 mL OAm, and 10 mL DMF. The solution was kept stirring for 1h, 4h, or 24h. After is, 0.2 mL the solution was quickly injected into toluene (5 mL) solution under vigorous stirring for 1min. Finally, the CPB₁₁₃/CPB₄₁₆ NCs were centrifuged at 5000 rpm for 5min and washed twice by toluene. The NCs powders were obtained by drying under vacuum and stored under ambient condition.

Synthesis of CsPbBr₃/Cs₄PbBr₆ composite (CPB₁₁₃/CPB₄₁₆) NCs without using MeIm.

Similar as the CPB_{113}/CPB_{416} NCs preparation approach, the $CPB_{113}-CPB_{416}$ NCs were synthesized by without using MeIm.

Synthesis of CsPbX₃ embedded in Cs₄PbX₆ composite (CPX₁₁₃/CPX₄₁₆) NCs.

Similar as CPB₁₁₃/CPB₄₁₆ NCs preparation approach, CsPb(Br/Cl)₃ embedded in Cs₄Pb(Br/Cl)₆ (CPBC₁₁₃/CPBC₄₁₆) NCs and CsPb(Br/I)₃ embedded in Cs₄Pb(Br/I)₆

(CPBI₁₁₃/CPBI₄₁₆) NCs were performed by blending appropriate reagents (CsCl, PbCl₂, CsI, PbI₂, CsBr, and PbBr₂) in DMF solution.

Optical properties characterization. UV/vis absorption spectra were collected by using a Cary 5000 UV/vis/NIR spectrophotometer (Varian Instruments). The PL spectra and the decay curves were measured by Edinburgh instruments FLS920. The PLQYs were performed at an excitation wavelength of 365 nm on the Hamamatsu instruments C9920.

The PL decay can be fitted by the double-exponential equation

$$I = A_1 e^{(-t/\tau_1)} + A_2 e^{(-t/\tau_2)}$$
(S1)

Where τ_1 and τ_2 are the fast and slow lived PL lifetime. A_1 and A_2 are the corresponding fitting parameters. The average PL lifetime can be further evaluated by the following equation:

$$\tau_{avg} = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2)$$
(S2)

X-ray diffraction (XRD) patterns. The powder X-ray diffraction was measured on a Rigaku D/MAX 2200 VPC using a Cu Kr radiation ($\lambda = 1.5405$ Å).

Transmission electron microscope (TEM) images were acquired on a FEI Tecnai G2 Spirit instrument with an accelerating voltage of 120 kV. High resolution TEM (HR-TEM) images and energy dispersive spectra (EDS), high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images, and elemental mapping images were acquired on a JEOL-JEM 2100F transmission electron microscope an accelerating voltage of 200 kV and an energy dispersive detector.

Fig. S1. The TEM images (a-c) and XRD patterns (d-f) of $CsPbBr_3-Cs_4PbBr_6$ composite NCs synthesized

Fig. S2. The SAED images of CPB₁₁₃/CPB₄₁₆ NCs.

Fig. S3. HAADF-STEM image (a), EDS spectrum (b), and elemental mappings (c-h) of as-prepared CPB₁₁₃/CPB₄₁₆ NCs.

Fig. S4. The XRD patterns (a), TEM image, (b), and SAED (c) of CsPbBr₃-Cs₄PbBr₆ composite NCs prepared by without using MeIm as capping ligands.

Fig. S5. The absorption spectrum of Cs₄PbBr₆ NCs.

Fig. S6. The transmittance of Cs₄PbBr₆ NCs.

Composition	Size	PLQY (%)	Ref.
Cs ₄ PbBr ₆	-	45	1
Cs ₄ PbBr ₆	>1 µm	40-45	2
CsPbBr ₃ -Cs ₄ PbBr ₆	$\sim 1 \ \mu m$	-	3
Cs ₄ PbBr ₆	~30 nm	54	4
CPB ₁₁₃ in CPB ₄₁₆	-	55	5
Cs ₄ PbBr ₆	~100 µm	40	6
CPB ₁₁₃ in CPB ₄₁₆	$\sim 200 \text{ nm}$	83	This work

Tab. S1. The comparison of PLQY of the composite perovskite solids.

Tab. S2. The lifetimes, fitting parameters of CPB_{113}/CPB_{416} NCs.

λ _{ex} /nm	A ₁ /%	$ au_1/\mathrm{ns}$	A ₂ /%	$ au_2/\mathrm{ns}$	$ au_{ m avg}/ m ns$
289	64.7	7.1	35.3	38.1	29.9
365	85.3	6.0	14.7	34.6	20.2

Fig. S7. Time-resolved PL decay of CsPbBr₃ NCs synthesized by hot-injection method.

Fig. S8. Schematic illustration of the possible recombination in the CPB_{113}/CPB_{416} composite NCs excited by 289nm and 365 nm, respectively.

Fig. S9. The electronic band structures of $CsPbBr_3$ (a) and Cs_4PbBr_6 (b), respectively.

(c) Schematic representation of Type I CsPbBr₃/Cs₄PbBr₆ core/shell structure.

Fig. S10. The TEM image (a), HAADF-STEM image (b), and elemental mappings (ch) of CPBC₁₁₃/CPBC₄₁₆ NCs.

Fig. S11. The TEM image (a), HAADF-STEM image (b), and elemental mappings (ch) of CPBI₁₁₃/CPBI₄₁₆ NCs.

Sample	PL peaks FWHM		PLQY	
_	(nm)	(nm)	(%)	
Blue	460	17	40	
Green	517	20	83	
Red	625	59	32	

Tab. S3. The PL peaks, FWHM, and PLQY of CPX_{113}/CPX_{416} NCs.

Sample	A ₁	$ au_1/\mathrm{ns}$	A ₂	$ au_2/\mathrm{ns}$	$ au_{ m avg}/ m ns$
Blue	14.4	3.23	0.3	25.4	6.5
Green	2.9	6.0	0.5	34.6	20.2
Red	0.9	16.9	0.5	67.3	51.4

Tab. S4. The lifetimes, fitting parameters of CPX_{113}/CPX_{416} NCs.

References

- (1) Saidaminov, M. I.; Almutlaq, J.; Sarmah, S.; Dursun, I.; Zhumekenov, A. A.;
 Begum, R.; Pan, J.; Cho, N.; Mohammed, O. F.; Bakr, O. M. Pure Cs₄PbBr₆:
 Highly Luminescent Zero-Dimensional Perovskite Solids. *ACS Energy Lett.*2016, *1* (4), 840.
- (2) Chen, D.; Wan, Z.; Chen, X.; Yuan, Y.; Zhong, J. Large-Scale Room-Temperature Synthesis and Optical Properties of Perovskite-Related Cs₄PbBr₆
 Fluorophores. J. Mater. Chem. C 2016, 4 (45), 10646.
- Ling, Y.; Tan, L.; Wang, X.; Zhou, Y.; Xin, Y.; Ma, B.; Hanson, K.; Gao, H.
 Composite Perovskites of Cesium Lead Bromide for Optimized Photoluminescence. J. Phys. Chem. Lett. 2017, 8 (14), 3266.
- (4) Zhang, Y.; Saidaminov, M. I.; Dursun, I.; Yang, H.; Murali, B.; Alarousu, E.;
 Yengel, E.; Alshankiti, B. A.; Bakr, O. M.; Mohammed, O. F. Zero-Dimensional Cs₄PbBr₆ Perovskite Nanocrystals. *J. Phys. Chem. Lett.* 2017, 8 (5), 961.
- Wang, Y.; Yu, D.; Wang, Z.; Li, X.; Chen, X.; Nalla, V.; Zeng, H.; Sun, H.
 Solution-Grown CsPbBr₃/Cs₄PbBr₆ Perovskite Nanocomposites: Toward

Temperature-Insensitive Optical Gain. Small 2017, 13 (34), 1701587.

(6) De Bastiani, M.; Dursun, I.; Zhang, Y.; Alshankiti, B. A.; Miao, X.-H.; Yin, J.;
Yengel, E.; Alarousu, E.; Turedi, B.; Almutlaq, J. M.et al. Inside Perovskites:
Quantum Luminescence from Bulk Cs₄PbBr₆ Single Crystals. *Chem. Mater.*2017, 29 (17), 7108.