Supporting Information

Antisolvent-assisted Controllable Growth of Fullerene Single Crystal Microwires for Organic Field Effect Transistors and Photodetectors

Xiaoming Zhao,^{1†} Tianjun Liu,^{1†} Yuzhou Cui,¹ Xueyan Hou,¹ Zilu Liu,² Xingyi Dai,³ Jie Kong,^{3*} Wenda Shi,^{1*} T. John S. Dennis^{1*}

+ X. Zhao and T. Liu have the equivalent contribution

Figure S1 X-Ray photoelectron spectroscopy (XPS) C1s spectrum of as-prepared C_{60} single crystals.

Figure S2 Representative optical microscopy images of C_{60} microwires prepared under (a) $C_{C60} = 2.0$ mg mL⁻¹; (b) $C_{C60} = 1.0$ mg mL⁻¹; (c) $C_{C60} = 0.5$ mg mL⁻¹; (d) $C_{C60} = 0.2$ mg mL⁻¹ with IPA as antisolvent.

Figure S3 Representative optical microscopy images of C_{60} microwires prepared under (a) $C_{C60} = 2.0 \text{ mg mL}^{-1}$; (b) $C_{C60} = 1.0 \text{ mg mL}^{-1}$; (c) $C_{C60} = 0.5 \text{ mg mL}^{-1}$; (d) $C_{C60} = 0.2 \text{ mg mL}^{-1}$ with EtOH as antisolvent.

Figure S4 Representative optical microscopy images of C_{60} microwires prepared under (a) $C_{C60} = 2.0 \text{ mg mL}^{-1}$; (b) $C_{C60} = 1.0 \text{ mg mL}^{-1}$; (c) $C_{C60} = 0.5 \text{ mg mL}^{-1}$; (d) $C_{C60} = 0.2 \text{ mg mL}^{-1}$ with MeOH as antisolvent.

Figure S5 Representative scanning electron microscopy images of C_{60} microwires prepared under (a) $C_{C60} = 2.0 \text{ mg mL}^{-1}$; (b) $C_{C60} = 1.0 \text{ mg mL}^{-1}$; (c) $C_{C60} = 0.5 \text{ mg mL}^{-1}$; (d) $C_{C60} = 0.2 \text{ mg mL}^{-1}$ with IPA as antisolvent.

Figure S6 Representative scanning electron microscopy images of C_{60} microwires prepared under (a) $C_{C60} = 2.0 \text{ mg mL}^{-1}$; (b) $C_{C60} = 1.0 \text{ mg mL}^{-1}$; (c) $C_{C60} = 0.5 \text{ mg mL}^{-1}$; (d) $C_{C60} = 0.2 \text{ mg mL}^{-1}$ with EtOH as antisolvent.

Figure S7 Representative scanning electron microscopy images of C_{60} microwires prepared under (a) $C_{C60} = 2.0 \text{ mg mL}^{-1}$; (b) $C_{C60} = 1.0 \text{ mg mL}^{-1}$; (c) $C_{C60} = 0.5 \text{ mg mL}^{-1}$; (d) $C_{C60} = 0.2 \text{ mg mL}^{-1}$ with MeOH as antisolvent.

Figure S8 Representative AFM selected area roughness analysis images of C_{60} microwires prepared under (a) $C_{C60} = 2.0$ mg mL⁻¹; (b) $C_{C60} = 1.0$ mg mL⁻¹; (c) $C_{C60} = 0.5$ mg mL⁻¹; (d) $C_{C60} = 0.2$ mg mL⁻¹ with IPA as antisolvent.

microwires prepared under (a) $C_{C60} = 2.0 \text{ mg mL}^{-1}$; (b) $C_{C60} = 1.0 \text{ mg mL}^{-1}$; (c) $C_{C60} = 0.5 \text{ mg mL}^{-1}$; (d) $C_{C60} = 0.2 \text{ mg mL}^{-1}$ with EtOH as antisolvent.

Figure S10 Representative AFM selected area roughness analysis images of C_{60} microwires prepared under (a) $C_{C60} = 2.0 \text{ mg mL}^{-1}$; (b) $C_{C60} = 1.0 \text{ mg mL}^{-1}$; (c) $C_{C60} = 0.5 \text{ mg mL}^{-1}$; (d) $C_{C60} = 0.2 \text{ mg mL}^{-1}$ with MeOH as antisolvent.

Figure S11 XRD patterns of vacuum-annealed FCC C_{60} single crystals grown by AVD method applying different antisolvents.

Figure S13 Representative transfer characteristics of the OFETs based on C_{60} crystal microwires grown from a xylene solution with a concentration of (a) 2.0 mg mL⁻¹; (b) 1.0 mg mL⁻¹; (c) 0.5 mg mL⁻¹; (d) 0.2 mg mL⁻¹ with IPA as antisolvent.

characteristics of the OFETs based on C_{60} crystal microwires grown from a xylene solution with a concentration of (a) 2.0 mg mL⁻¹; (b) 1.0 mg mL⁻¹; (c) 0.5 mg mL⁻¹; (d) 0.2 mg mL⁻¹ with EtOH as antisolvent.

microwires grown from a xylene solution with a concentration of (a) 2.0 mg mL^{-1} ; (b) 1.0 mg mL^{-1} ; (c) 0.5 mg mL^{-1} ; (d) 0.2 mg mL^{-1} with MeOH as antisolvent.

Figure S16 Typical transfer characteristics of OFETs based on C_{60} needle crystals grown from drop cast method with a concentration of 0.5 mg mL⁻¹.

Figure S17 Spectral responsivity of the AVD photodetector measured as a function of illumination wavelength at an applied bias of 30 V.

Figure S18 Normalized responsivity of the ACD photodetectors and DC photodetectors in ambient environment without encapsulation as a function of storage time. The temperature and relative humidity is 23 $^{\circ}$ C and 30%.

Table S1 Characteristics of AVD photodetectors based on C_{60} SCMWs with different surface-to-volume ratio. Photo-response was measured at a fixed voltage of 30 V with power density of 1.5 mW cm⁻²

	C _{C60}			Responsivity
Antisolvent	(mg mL ⁻¹)	surface-to-volume ratio	On/off ratio	(A W ⁻¹)
IPA	2.0	~ 6268	26.7	82.6
EtOH	2.0	~ 4157	15.8	50.3
МеОН	2.0	~ 3894	13.3	12.9