Electronic Supplementary Information:

Revealing Principal Attributes of Protein Adsorption on Block Copolymer Surfaces with Direct Experimental Evidence at the Single Protein Level

Tian Xie†, Joyjit Chattoraj‡§, Patrick J. Mulcahey†, Noah P. Kelleher†, Emanuela Del Gado‡, and Jong-in Hahn†,*

†Department of Chemistry and ‡Department of Physics, Georgetown University, 37th & O Sts. NW., Washington, DC 20057, USA

§Present Address: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371

*Address Correspondence to jh583@georgetown.edu
Figure S1. 1.5 x 1.5 μm² AFM topography panels showing the different amounts of Fg adsorbed on homopolymer PS when the polymer surface was (A) used as is without any treatment and (B) treated with Mg²⁺ using 10 mM MgCl₂ solution. The protein deposition conditions of 0.3 μg/mL Fg in PBS for 15 min were kept identical on the two surfaces. As observed in the representative AFM panels, the Mg²⁺-modified polymer surface resulted in an approximately 1.5-fold higher density of Fg molecules relative to the untreated surface. The protein with a net negative charge on its surface at pH 7.4 is attracted to the divalent cation-treated polymer surface more strongly than to the untreated counterpart.