Electronic Supplementary Information

Nanoparticle-enhanced electrical detection of Zika virus on paper microchip

Mohamed Shehata Draz,abc Manasa Venkataramani,a†, Harini Lakshminarayanan,a† Ecem Saygili,a†, Maryam Moazeni,a Anish Vasan,a Yudong Li,a Xiaoming Sun,d Stephane Hua,d Xu G. Yu,d Hadi Shafieeab*

a. Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
b. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
c. Faculty of Science, Tanta University, Tanta 31527, Egypt
d. The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02129
e. Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
† Authors contributed equally to this work
* Corresponding author. Email: hshafiee@bwh.harvard.edu
Supplementary Methods

Synthesis of PtNPs
Briefly, 36 ml of a 0.2 % solution of chloroplatinic acid hexahydrate was mixed with 464 ml of boiling deionized water. 11 ml of a solution containing 1 % sodium citrate and 0.05 % citric acid was added followed by a quick injection of 5.5 ml of a freshly prepared 0.08 % sodium borohydrate solution, containing 1 % sodium citrate and 0.05 % citric acid. The reaction continued for 10 min and the formed nanoparticles solution was gradually cooled down to room temperature.

Virus culture and isolation
Aedes albopictus cells (C6/36) were prepared and infected with ZIKV and harvested. 4 flasks (225 cm3) of the cells were prepared and infected with the virus. Infection was carried out by adding serum sample to the culture flask and incubating at an angle of 20° at 33 °C for 6 days. After incubation, the virus was harvested by treating with 23 % v/v FBS. The supernatant from the flasks was collected and centrifuged at 4000 g for 30 min. The supernatant after centrifugation was collected without disturbing the cell pellet and 500 μL aliquots were prepared and stored.

Biotinylation of Anti-Zika antibodies
Anti-Zika antibodies were biotinylated using the Biotin type A fast conjugation kit (Abcam, ab201795). 1 μL of Biotin Modifier reagent was added to every 10 μL of antibody to be labeled and was mixed gently. This was added to a vial containing lyophilized Biotin and was left for incubation at room temperature (20 °C to 25 °C) for 15 min. 1 μL of Quencher reagent was then added to every 10 μl of the antibody used. The mixture was incubated at room temperature for 4 min and stored at 4 °C.

Magnetic bead modification
200 μl of streptavidin-coated magnetic beads (Thermo Fisher Scientific- PierceTM Streptavidin magnetic beads; 88816) of 1 μm diameter was washed thrice using PBS, during which the beads were isolated using a MagnaGRIP™ (MilliPore) magnetic stand. 10 μL of the biotinylated target was added to the magnetic bead solution and left for incubation overnight on a shaker at 4 °C. Antibody conjugated beads were then washed twice using PBS and suspended in 2 mL PBS.
Supplementary Results:

Figure S1. Detailed preparation protocol of Pt-nanoprobe. The surface of PtNPs of the prepared platinum nanoparticles (PtNPs) was modified with 3-(2-Pyridyldithio)propionyl hydrazide (PDPH) through the thiol-metal interaction. The hydrazide terminal of PDPH then allowed to couple to the free aldehyde group (CHO) in the oxidized FC region of Zika virus monoclonal antibody (anti-ZIKV mAb), forming the Pt-nanoprobes used in labeling Zika virus.
Figure S2. Dynamic light scattering (DLS) analysis of the size distribution of the prepared PtNPs used in the preparation of platinum nanoprobe (Pt-nanoprobe).
Figure S3. Zeta potential of the prepared citrate capped PtNPs used in the preparation of platinum nanoprobe (Pt-nanoprobe).
Figure S4. FTIR analysis of anti-Zika monoclonal antibody showing different peaks at 1643.40 cm\(^{-1}\), 1537.31 cm\(^{-1}\) and 1111.03 cm\(^{-1}\) that are characteristic to the amide I and amide II bands of protein.
Figure S5. The detection of ZIKV on the developed paper microchip without post-capture labeling step with Pt-nanoprobes. Different concentrations of ZIKV (10^1 particle/μl to 10^5 particle/μl) were prepared in 1x PBS and captured with magnetic beads, lysed and tested on-chip. Error bars are standard deviations of mean from a total of three independent measurements.
Table S1. Summary of common types of paper-based systems recently reported for human viruses detection

<table>
<thead>
<tr>
<th>Paper systema</th>
<th>Target virusb</th>
<th>Assay type</th>
<th>Detection Method</th>
<th>Detection limit</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose paper</td>
<td>RSV</td>
<td>Nucleic acid assay</td>
<td>Colorimetric</td>
<td>100 copies</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>Immunoassay</td>
<td>Electro-chemiluminescence</td>
<td>34.2 pg/ml</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>ZIKV</td>
<td>Intact virus assay</td>
<td>Electrical</td>
<td>10^2 particle/μl</td>
<td>Current study</td>
</tr>
<tr>
<td>Wax-printed cellulose paper</td>
<td>NoV</td>
<td>Immunoassay</td>
<td>Scattering</td>
<td>10 pg/ml</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EBOV</td>
<td>Nucleic acid assay</td>
<td>Colorimetric</td>
<td>10^7 copies/μl</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>HIV-1</td>
<td>Intact virus assay</td>
<td>Electrical</td>
<td>10^7 copies/ml</td>
<td>5</td>
</tr>
<tr>
<td>LFA strip</td>
<td>DENV</td>
<td>Nucleic acid assay</td>
<td>Colorimetric</td>
<td>50 copies</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>HBV</td>
<td>Nucleic acid assay</td>
<td>Colorimetric</td>
<td>104 copies/ml</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>HPV</td>
<td>Immunoassay</td>
<td>Colorimetric</td>
<td>NA</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>HIV-1</td>
<td>Intact virus assay</td>
<td>Electrochemical</td>
<td>NA</td>
<td>9</td>
</tr>
<tr>
<td>Barcode LFA</td>
<td>HBV, HCV, HIV-1</td>
<td>Immunoassay</td>
<td>Colorimetric</td>
<td>0.003 nM</td>
<td>10</td>
</tr>
<tr>
<td>Electrochemical paper system</td>
<td>HHV-5</td>
<td>Nucleic acid assay</td>
<td>Electrochemical</td>
<td>97 copies/ml</td>
<td>11</td>
</tr>
<tr>
<td>Silica sprayed cellulose paper</td>
<td>IAV</td>
<td>Immunoassay</td>
<td>Electrochemical</td>
<td>113 PFU/ml</td>
<td>12</td>
</tr>
<tr>
<td>NC-paper system</td>
<td>NoV</td>
<td>Nucleic acid assay</td>
<td>Fluorometric</td>
<td>4.4 ng/ml, 3.3 ng/ml</td>
<td>13</td>
</tr>
<tr>
<td>Paper-Dot-ELISA chip</td>
<td>IAV</td>
<td>Immunoassay</td>
<td>Colorimetric</td>
<td>NA</td>
<td>14</td>
</tr>
</tbody>
</table>

aLFA: lateral flow assay; NC: nitrocellulose membrane; ELISA: enzyme-linked immunosorbent assay
bDENV: dengue virus; EBOV: Ebola virus; HBV: hepatitis B virus; HCV: hepatitis C virus; HHV-5: herpes virus-5; HIV-1: human immunodeficiency virus-1; HPV: human papillomavirus; IAV: influenza A virus; NoV: norovirus; RSV: respiratory syndrome Virus; ZIKV: Zika virus
References