Supplementary Materials

Uniquely integrated Fe-doped Ni(OH)₂ nanosheets for highly efficient oxygen

and hydrogen evolution reactions

Jin-Tao Ren,^{*a,b*} Ge-Ge Yuan,^{*a,b*} Chen-Chen Weng,^{*a,b*} Lei Chen,^{*a,b*} and Zhong-Yong Yuan ^{*a,b,**}

^a National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China

* Corresponding author. Email: zyyuan@nankai.edu.cn.

1. Supplementary Figures

Fig. S1 Optical images of pristine Ni foam (*left*) and the FeNiOH/NF electrode (*right*).

Fig. S2 (a) and (b) SEM images of pristine Ni foam at different magnifications.

Fig. S3 (a) and (b) SEM images of NiOH/NF at different magnifications.

Fig. S4 XPS survey scans of FeNiOH/NF.

Fig. S5 The XPS survey scans of NiOH/NF electrode (a), the corresponding Ni 2p (b) and O 1s (c) core level spectra. The high-resolution Ni 2p spectrum shows two major peaks at 853.5 and 871.6 eV, corresponding to Ni $2p_{3/2}$ and Ni $2p_{1/2}$, respectively, accompanying with other two satellite peaks at 859.8 and 877.8 eV. The high resolution spectrum of O 1s contains a strong peak at 527.9 eV which usually is attributed to oxygen-metal bond, and the other fitted peaks at 526.2 and 529.4 eV can be ascribed to oxygen in hydroxide group, and surface-adsorbed water molecule. The shift of binding energy of Ni 2p and O 1s of NiOH/NF as compared with FeNiOH/NF (Fig. 2) indicates the strong doping effect of Fe into Ni(OH)₂ lattice.

Fig. S6 Optical image of electrocatalytic OER process about the three-electrode glass cell and the fabricated electrode was directly used as the working electrode.

Fig. S7 Cyclic voltammograms of FeNiOH/NF and NiOH/NF electrodes in O₂-saturated 1.0 M KOH.

Fig. S8 Cyclic voltammograms of (a) NiOH/NF and (b) FeNiOH/NF measured at scan rates from 5 to 50 mV s⁻¹.

Fig. S9 (a) Polarization curves and corresponding Tafel plots (*inset*) of FeNiOH/NF, D-NiOH/NF, and scratched FeNiOH/NF. (b) EIS of FeNiOH/NF, D-NiOH/NF, and scratched FeNiOH/NF recorded at 1.60 V. Inset in (b): the corresponding equivalent circuit diagram.

Fig. S10 Chronopotentiometric curve of FeNiOH/NF, D-NiOH/NF, and scratched FeNiOH/NF at 50 and 200 mA cm⁻², respectively.

Fig. S11 SEM images of D-NiOH/NF prepared by electrodeposition method (a) and after long-term OER stability test (b-d).

Fig. S12 (a-c) TEM and (d) HR-TEM images of FeNiOH/NF after long–term OER stability test. It can be found that the nanosheet structure is well retained and the clear lattice fringes are observed, revealing the high structural stability of this integrated electrocatalyst after long-term OER stability test.

2. Supplementary Tables

Catalyst	Substrate	Electrolyte	$E_{J=10}$ (V)	<i>E</i> _{J=20} (V)	Tafel slop (mV dec ⁻¹)	Reference
Fe doped Ni(OH) ₂	Ni foam	1.0 M KOH	N.A.	1.50	99	This work.
Ni ₅ P ₄ /Ni ₂ P-C	Glassy carbon	1.0 M KOH	1.53	N.A.	64	[1]
Ni-doped FeOOH	FTO	0.1 M NaOH	1.66	N.A.	N.A.	[2]
FeNi LDH/GO	Glassy carbon	1.0 M KOH	1.45	N.A.	39	[3]
Au@Co ₃ O ₄	Glassy carbon	0.1 M KOH	> 1.60 V	N.A.	60	[4]
FeOOH/CeO ₂ nanotube	Ni foam	1.0 M KOH	> 1.45 V	N.A.	92.3	[5]
CoP	Glassy carbon	1.0 M KOH	1.55 V	N.A.	84	[6]
Co(OH) ₂	Glassy carbon	1.0 M KOH	1.55 V	N.A.	53	[7]
NiFeMn layered double hydroxides	Glassy carbon	1.0 M KOH	N.A.	1.519 V	47	[8]
NiCo ₂ O ₄ nanocages	Glassy carbon	1.0 M KOH	1.57 V	N.A.	75	[9]
Co ₃ O ₄ nanosheet	Glassy carbon	1.0 M KOH	1.56 V	N.A.	69	[10]
NiO	Ni foam	1.0 M KOH	1.575 V	N.A.	53	[11]
NiCo-LDH nanosheets	Ni foam	1.0 M KOH	> 1.53 V	N.A.	113	[12]
NiCo ₂ O ₄	Glassy carbon	1.0 M KOH	1.52 V	N.A.	53	[13]
Co ₃ O ₄ nanowires	Glassy carbon	1.0 M KOH	> 1.65 V	N.A.	72	[14]

Table S1. Comparison of OER performance of several recently reported nonprecious electrocatalytsts.

Catalyst	Substrate	Electrolyte	<i>E_{J=10}(</i> mV) _{VS.} RHE	<i>E_{J=100}(mV)</i> _{VS.} RHE	Tafel Slop (mV dec ⁻¹)	Reference
Fe doped Ni(OH) ₂	Ni foam	1.0 M KOH	138	291	63.7	This work.
NiS	Ni foam	1.0 M KOH	122	137	69	[15]
Ni ₈ P ₃	Ni foam	1.0 M KOH	130	N.A.	58.5	[16]
NiCoP	Ti film	1.0 M KOH	97	258	50	[17]
NiCo ₂ S ₄	Ni foam	1.0 M KOH	240	N.A.	58.9	[18]
NiFe/NiCo ₂ O ₄	Ni foam	1.0 M KOH	105	N.A.	88	[19]
Co-P film	Copper film	1.0 M KOH	94	158	42	[20]
Ni ₃ S ₂ leaves	Ni foam	1.0 M KOH	182	N.A.	89	[21]
NiS nanoframes	Ni foam	1.0 M KOH	94	N.A.	N.A.	[22]
FeP	Carbon cloth	1.0 M KOH	218	N.A.	146	[23]
СоР	Carbon cloth	1.0 M KOH	67	N.A.	129	[24]
CoOx@CN	Glassy carbon	1.0 M KOH	232	N.A.	N.A.	[25]
NiP/NF	Ni foam	1.0 M KOH	102	195	90	[26]
Co-NRCNTs	Glassy carbon	1.0 M KOH	370	N.A.	N.A.	[27]
NiS _x	Ni foam	1.0 M KOH	60	N.A	99	[28]
Ni ₂ P	Ni foam	1.0 M KOH	98	N.A.	72	[29]
Ni ₅ P ₄ Films	Ni foil	1.0 M KOH	150	N.A.	53	[30]
Ni ₃ S ₂	Ni foam	1.0 M KOH	292	N.A.	N.A.	[31]
CoS ₂ @MoS ₂ /RGO	Glassy carbon	0.5 M H ₂ SO ₄	98	175	37.4	[32]

Table S2. Comparison of HER performance of several recently reported nonprecious electrocatalytsts.

i, , , ,	· · · ·		,		0
Catalyst	Substrate	Electrolyte	$E_{J=10}(V)$	$E_{J=20}(V)$	Reference
Fe doped Ni(OH) ₂	Ni foam	1.0 M KOH	1.64	1.69	This work.
NiS	Ni foam	1.0 M KOH	1.61	1.67	[15]
NiCoP	Ti film	1.0 M KOH	1.65	N.A.	[17]
NiCo ₂ S ₄	Ni foam	1.0 M KOH	1.63	N.A.	[18]
NiFe/NiCo ₂ O ₄	Ni foam	1.0 M KOH	1.67	N.A.	[19]
Co-P film	Copper film	1.0 M KOH	> 1.62	N.A.	[20]
Ni ₅ P ₄ /Ni foil	Ni foil	1.0 M KOH	about 1.68	N.A.	[30]
Ni ₃ S ₂ /Ni foam	Ni foam	1.0 M KOH	about 1.70	N.A.	[31]
NiSe	Ni foam	1.0 M KOH	1.63	1.75	[33]
Ni ₂ P	Ni foam	1.0 M KOH	1.63	N.A.	[34]
NiP/Ni	Ni foam	1.0 M KOH	1.62	1.66	[35]
CoO-CNF	Stainless steel	1.0 M KOH	1.63	N.A.	[36]
Cu@NiFe LDH	Cu foam	1.0 M KOH	1.54	N.A.	[37]
CNTs/CoS ₂	Carbon paper	1.0 M KOH	1.743	N.A.	[38]
Co _{0.85} Se/NiFe-LDH	Exfoliated	1.0 M KOH	1.67	N.A.	[39]
	Graphene Foil				
NiFe LDH	Ni foam	1.0 M KOH	1.70	N.A.	[40]
Ni/Mo ₂ C	Ni foam	1.0 M KOH	1.66	N.A.	[41]
NiSe	Ni foam	1.0 M KOH	1.63	N.A.	[42]
NiFeO _x /CNF	Carbon nanofibres	1.0 M KOH	1.62	N.A.	[36]
Ni@N doped graphene	Ni foam	1.0 M KOH	1.60	N.A.	[43]
MoNi ₄	Ni foam	1.0 M KOH	1.58	N.A.	[44]

Table S3. Comparison of several recently reported nonprecious OER/HER bifunctional electrocatalysts toward overall water splitting.

References

[1] X.-Y. Yu, Y. Feng, B. Guan, X.W. Lou, U. Paik, *Energy Environ. Sci.*, 2016, 9, 1246-1250.

[2] W.D. Chemelewski, J.R. Rosenstock, C.B. Mullins, J. Mater. Chem. A, 2014, 2, 14957-14962.

[3] X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, Angew. Chem. Int. Ed., 2014, 53, 7584-7588.

[4] Z.B. Zhuang, W.C. Sheng, Y.S. Yan, Adv. Mater., 2014, 26, 3950-3955.

[5] J.X. Feng, S.H. Ye, H. Xu, Y.X. Tong, G.R. Li, Adv. Mater., 2016, 28, 4698-4703.

[6] J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu, W. Xing, ACS Catal., 2015, 5, 6874-6878.

[7] P.F. Liu, S. Yang, L.R. Zheng, B. Zhang, H.G. Yang, J. Mater. Chem. A, 2016, 4, 9578-9584.

[8] Z. Lu, L. Qian, Y. Tian, Y. Li, X. Sun, X. Duan, Chem. Commun., 2016, 52, 908-911.

[9] X. Lv, Y. Zhu, H. Jiang, X. Yang, Y. Liu, Y. Su, J. Huang, Y. Yao, C. Li, *Dalton Trans.*, 2015, 44, 4148-4154.

[10] S. Du, Z. Ren, Y. Qu, J. Wu, W. Xi, J. Zhu, H. Fu, Chem. Commun., 2016, 52, 6705-6708.

[11] J. Liang, Y.-Z. Wang, C.-C. Wang, S.-Y. Lu, J. Mater. Chem. A, 2016, 4, 9797-9806.

[12] J. Jiang, A. Zhang, L. Li, L. Ai, J. Power Sources, 2015, 278, 445-451.

[13] X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, Z. Lin, *Angew. Chem. Int. Ed.*, 2016, 55, 6290-6294.

[14] Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang, G. Zheng, *Adv. Energy Mater.*, 2014, 4, 1400696.

[15] J.-T. Ren, Z.-Y. Yuan, ACS Sustainable Chem. Eng., 2017, 5, 7203-7210.

[16] G.-F. Chen, T.Y. Ma, Z.-Q. Liu, N. Li, Y.-Z. Su, K. Davey, S.-Z. Qiao, *Adv. Funct. Mater.*, 2016, 26, 3314-3323.

[17] C. Wang, J. Jiang, T. Ding, G. Chen, W. Xu, Q. Yang, Adv. Mater. Interfaces, 2015, 3, 1500454.

[18] A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661-4672.

[19] C. Xiao, Y. Li, X. Lu, C. Zhao, Adv. Funct. Mater., 2016, 26, 3515-3523.

[20] N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254.

[21] T. Zhu, L. Zhu, J. Wang, G.W. Ho, J. Mater. Chem. A, 2016, 4, 13916-13922.

[22] X.Y. Yu, L. Yu, H.B. Wu, X.W. Lou, Angew. Chem. Int. Ed., 2015, 54, 5331-5335.

[23] Y. Liang, Q. Liu, A.M. Asiri, X. Sun, Y. Luo, ACS Catal., 2014, 4, 4065-4069.

[24] J. Tian, Q. Liu, A.M. Asiri, X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.

[25] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.

[26] J. Ren, Z. Hu, C. Chen, Y. Liu, Z. Yuan, J. Energy Chem., 2017, 26, 1196-1202.

[27] X. Zou, X. Huang, A. Goswami, R. Silva, B.R. Sathe, E. Mikmeková, T. Asefa, Angew. Chem. Int. Ed., 2014, 126, 4461-4465.

[28] B. You, Y. Sun, Adv. Energy Mater., 2016, 6, 1502333.

[29] B. You, N. Jiang, M. Sheng, M.W. Bhushan, Y. Sun, ACS Catal., 2015, 5, 714-721.

[30] M. Ledendecker, S. Krick Calderon, C. Papp, H.P. Steinruck, M. Antonietti, M. Shalom, *Angew. Chem. Int. Ed.*, 2015, 54, 12361-12365.

[31] L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, *J. Am. Chem. Soc.*, 2015, 137, 14023-14026.

[32] Y. Guo, L. Gan, C. Shang, E. Wang, J. Wang, Adv. Funct. Mater., 2017, 27, 1602699.

[33] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351-9355.

[34] L.-A. Stern, L. Feng, F. Song, X. Hu, Energy Environ. Sci., 2015, 8, 2347-2351.

[35] Y.P. Zhu, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, Adv. Funct. Mater., 2015, 25, 7337-7347.

[36] H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, *Nat. Commun.*, 2015, 6, 7261.
[37] L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, *Energy Environ. Sci.*, 2017, 10, 1820-1827.

[38] J. Wang, H.-X. Zhong, Z.-I. Wang, F.-I. Meng, X.-B. Zhang, ACS Nano, 2016, 10, 2342-2348.

[39] Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, *Energy Environ. Sci.*, 2016, 9, 478-483.

[40] J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, *Science*, 2014, 345, 1593-1596.

[41] Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng, S.-H. Yu, Chem. Sci., 2017, 8, 968-973.

[42] C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem., 2015, 127, 9483-9487.

[43] Y. Xu, W. Tu, B. Zhang, S. Yin, Y. Huang, M. Kraft, R. Xu, Adv. Mater., 2017, 29, 1605957.

[44] Y. Jin, X. Yue, C. Shu, S. Huang, P.K. Shen, J. Mater. Chem. A, 2017, 5, 2508-2513.