Electronic Supplementary Material (ESI)

Coke-resistant defect-confined Ni-based nanosheet-like catalysts derived from halloysites for CO₂ reforming of methane

Meirong Lu,^{a‡} Jianhui Fang,^{a‡} Lupeng Han,^a Kajornsak Faungnawakij,^c Hongrui Li,^a Sixiang Cai,^b Liyi Shi,^a Hong Jiang,^b and Dengsong Zhang^a*

^a Department of Chemistry, Research Center of Nano Science and Technology, Shanghai

University, No.99 of Shangda Road, Shanghai 200444, P.R. China

^b State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, No.

58 of Renmin Avenue, Haikou 570228, P.R. China

° National Nanotechnology Center, National Science and Development Agency, 111 Thailand

Science Park, Klong Neung, KlongLuang, Pathum Thani 12120, Thailand

[‡] These authors contributed equally to this work.

*Corresponding author. Tel. & Fax: (+86) 21-66137152; E-mail: dszhang@shu.edu.cn

Scheme S1. Schematic illustration of the fabrication strategy of the Ni/HA tubes.

Fig. S1 TEM images of (a) Ni/HA tubes reduced at 750 °C for 1h b) Ni/HA tubes after the 20 h stability test.

Fig. S2 N_2 sorption isotherms of HA, Ni/HA tubes and Ni/HA sheets.

Fig. S3 XRD patterns of HA.

Fig. S4 UV-Vis spectra of HA.

Fig. S5 Effects of reaction temperature on CO_2 conversion over the catalysts.

Fig. S6 CH₄ reforming of methane stability of the Ni/ HA sheets-B catalyst: CH₄ conversion as a function of reaction time (GHSV = $15,000 \text{ mL } \text{h}^{-1}\text{gcat}^{-1}, 750 \text{ }^{\circ}\text{C}, 1 \text{ atm}$).

Fig. S7 CO₂ reforming of methane stability of the catalysts: CO₂ conversion as a function of reaction time (GHSV = 15,000 mL h^{-1} gcat⁻¹, 750 °C, 1 atm).

Catalysts	Temp. (°C)	Time X (h)	CH ₄ conv.	CH ₄ conv.			
			(%)	(%)	References		
			T=0h	T=Xh			
Ni/ZrO ₂	750	12	53	33	ref. 1		
10Ni15Ce/illite	800	4	88	84	ref. 2		
Ni/SiO ₂ –F	700	6	62	56	ref. 3		
LaNi _{0.4} Ce _{0.6} O ₃	800	10	91	80	ref. 4		
10Ni15La/illite	800	25	80	78	ref. 5		
Ni/HA sheets	750	20	89	88	This work		

Table S1 Comparison of the previously reported Ni catalysts.

Cotolyata	Temp. (°C)	Time X	$\mathrm{TOF}_{\mathrm{CH4}}^{\mathrm{c}}$	References	
Catalysis		(h)	(h ⁻¹)		
Ni/SBA-16	700	100	1728	ref. 6	
Ni-MgO-ZrO ₂	800	5	1577	ref. 7	
Co/Al ₂ O ₃	750	20	1584	ref. 8	
Ni/HA sheets	750	20	2175	This work	

Table S2 Comparison of TOF_{CH4} of the previously reported Ni catalysts.

Catalysts	Temp. (°C)	Time X (h)	Surface	Ni dispersion ^b (%)		TOF _{CH4} c(h ⁻¹)	
			area ^a $(m^2 g^{-1})$	t = 10 min	t = 360 min	t = 10min	t = 360min
Ni/HA tubes	550	6	51	0.98%	0.37%	790	624
Ni/HA sheets	550	6	55	0.33%	0.34%	2175	2169

Table S3 The TOF_{CH4} of the as-prepared catalysts during the DRM reaction at 500 °C and textural properties of the spent catalysts.

^{*a*} Specific surface area of the spent catalysts after the 20 h stability test determined by the BET method.

^b Ni dispersion were measured by H₂ pulse chemisorption.

^c The value of TOF was tested at 550°C with CH₄ flowing of 45 ml/min.

Fig. S8 N_2 sorption isotherms of the spent catalysts after the 20 h stability test.

Fig. S9 O_2 -TPO profiles of the spent catalysts after the 20 h stability test.

Fig. S10 In situ DRIFTs spectra of transient reactions over (a) Ni/HA sheets; (b) Ni/HA tubes catalysts after the CO₂ adsorption at 500 °C for 1 h and then exposed to CH_4 ; (c) consumption rate of Si-OH species over the Ni/HA sheets and Ni/HA tubes catalysts upon passing CH_4 .

In situ DRIFTs of transient reactions over Ni/HA sheets and Ni/HA tubes catalysts was carried out to clarify the reaction mechanisms. First, the sample in the DRIFTs cell was pre-treated at 300 °C under a 50 ml/min N₂ atmosphere and kept at this temperature for 30 min. Then, the catalysts were pre-adsorbed by CO₂ at 500 °C for 1 h. After that, CH₄ introduced into the cell and spectra were obtained by collecting 16 scans with a resolution of 4 cm⁻¹. From the *in situ* DRIFTs spectra, the gas phase CH₄ can be easily discerned at wavenumbers 3015 and 1304 cm⁻¹ and CO₂ peaks appeared at 2360 and 2340 cm⁻¹, respectively (Fig. S10a-b). The intensity of Si-OH peaks at 3694-3800 cm⁻¹ over both the Ni/HA sheets and Ni/ HA tubes disappeared while exposing to CH₄. In addition, the intensity of Si-OH over Ni/HA sheets decreases rapidly than that of Ni/HA tubes with flowing CH₄ stream due to the strong interaction between Ni and HA sheets (Fig. S10c). We can also conclude that bidentate formate species at 2878 cm⁻¹ dominate over bicarbonates detected at 1419 and 1224 cm⁻¹ on the surface of the catalysts. It means that H* is produced via dissociation of CH₄ on Ni particles which accelerates the formation of transition from bicarbonate.

Reference

- 1. V. M. Gonzalez-Delacruz, R. Pereñiguez, F. Ternero, J. P. Holgado and A. Caballero, *ACS Catal.*, 2011, **1**, 82-88.
- 2. M. Akri, T. Chafik, P. Granger, P. Ayrault and C. Batiot-Dupeyrat, Fuel, 2016, 178, 139-147.
- S. Wen, M. Liang, J. Zou, S. Wang, X. Zhu, L. Liu and Z.-j. Wang, J. Mater. Chem. A, 2015, 3, 13299-13307.
- 4. T. V. Sagar, N. Sreelatha, G. Hanmant, M. Surendar, N. Lingaiah, K. S. Rama Rao, C. V. V. Satyanarayana, I. A. K. Reddy and P. S. Sai Prasad, *RSC Adv.*, 2014, **4**, 50226-50232.
- 5. M. Akri, S. Pronier, T. Chafik, O. Achak, P. Granger, P. Simon, M. Trentesaux and C. Batiot-Dupeyrat, *Appl. Catal. B.*, 2017, **205**, 519-531.
- 6. S. Zhang, S. Muratsugu, N. Ishiguro and M. Tada, ACS Catal., 2013, 3, 1855-1864.
- W.-J. Jang, H.-M. Kim, J.-O. Shim, S.-Y. Yoo, K.-W. Jeon, H.-S. Na, Y.-L. Lee, D.-W. Jeong, J. W. Bae, I. W. Nah and H.-S. Roh, *Green Chem.*, 2018, 20, 1621-1633.
- 8. J.-H. Park, S. Yeo, T.-J. Kang, I. Heo, K.-Y. Lee and T.-S. Chang, Fuel, 2018, 212, 77-87.