Supporting Information

Directional Sensing Based on Flexible Aligned Carbon Nanotube Film Nanocomposites

Chao Suia,b,\#, Yingchao Yangc,\#, Robert J. Headrickd,\#, Zixuan Pana, Jianyang Wuf, Jing Zhanga, Chao Wanga,b,*, Xiaodong Heb, Matteo Pasqualid,e, Jun Loua,*

aDepartment of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA

bNational Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China

cDepartment of Mechanical Engineering, University of Maine, 5711 Boardman Hall, Orono, ME 04469, USA

dDepartment of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA

eDepartment of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA

fDepartment of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China

\#C. Sui, Y.C. Yang, and R. J. Headrick contribute equally.

*Corresponding Email: chaowang@hit.edu.cn; jlou@rice.edu
Section 1: CGMD simulation of aligned SWCNT film with entanglements.

(a) // direction

ε = 1%
ε = 5%
ε = 10%

(b) \(\perp \) direction

ε = 5%
ε = 15%
ε = 30%

(c) // direction

ε = 1%
ε = 5%
ε = 10%

(d) \(\perp \) direction

ε = 5%
ε = 15%
ε = 30%

Fig. S1. CGMD simulation for the case that the entanglement was considered, where the interlocking effect on stress-transfer and failure fashions was presented.
Section 2: Electrical testing system and micromechanical tester.

Fig. S2. Image for setup of electromechanical measurement, where the SWCNT film composite was fixed on the micro-tester and the copper electrodes were connected with an electrical measurement system.
Section 3: Sample preparation of single aligned SWCNT film for in situ tensile test.

Fig. S3. SEM image for fixing a SWCNT film onto a micromechanical device, where the testing region was cut into a rectangular shape using FIB.