Supporting Information

Microneedles Integrated with a Triboelectric Nanogenerator: An Electrically Active Drug Delivery System

Moonjeong Bok,a,b,Yunwoo Lee,b,c Daehoon Park,a Sangho Shin,b Zhi-Jun Zhao,b Boyeon Hwang,a Soon Hyoung Hwang,b So Hee Jeon,b Joo-Yun Jung,b Sung Ha Park,f Junghyo Nah,d Eunju Lim,a,* and Jun-Ho Jeong,b,*

a Department of Science Education/Creative Convergent Manufacturing Engineering, Dankook University, Yongin 448-701, Korea

b Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials, Daejeon 305-343, Korea

c Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany

d Department of Electrical Engineering, Chungnam National University, Daejeon 305-764, Korea

e Department of School of Electrical Engineering, College of Engineering, Korea University, Seoul 02841, Korea

f Department of Physics, Sungkunkwan University, Suwon 16419, Korea

† Equal contribution

* Corresponding authors: Eunju Lim, Jun-Ho Jeong

E-mail address: elim@dankook.ac.kr, jhjeong@kimm.re.kr
Figure S1. Photograph of the fabricated SDNA film.
Figure S2. Photograph of a microneedle patch.
Figure S3. Output current with respect to the concentration of drug molecules in SDNA/Drug molecule composite films: (a) 1, (b) 5, and (c) 10 wt%.
Figure S4. AFM images with respect to the concentration of drug molecules in SDNA/Drug molecule composite films: (a) 1, (b) 5, and (c) 10 wt%. All samples were scanned over a region of 10 × 10 μm² in size.
Figure S5. SEM images of patterned SDNA: Line (L)/ Space (S) 200/800 nm, L/S 200/400 nm, L/S 100/100 nm. (b) Output performance with patterned SDNA.
Figure S6. Absorption spectrum over time of (a) needle attachment, (b) needle attachment with triboelectrification. The inset shows the images of drug release into the hydrogel and the decolorized hydrogel after drug release.