Supporting information

iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery

Hang Hu a,h, Jiangling Wan a,h,d, Xuetao Huang a,h, Yuxiang Tang a, Chen Xiao a, Huibi Xu a,h,c, Xiangliang Yang a,h,c,* and Zifu Li a,h,c,d,*

aDepartment of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China

bNational Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China

cHubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China

dWuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan, 430040, P. R. China

Author Contributions: *These three authors contributed equally to this work.

*Corresponding authors:

Professor Zifu Li

Tel.: 86 27 87792234, Fax: 86 27 87792234

E-mail: zifuli@hust.edu.cn

Professor Xiangliang Yang

Tel.: 86 27 87792234, Fax: 86 27 87792234

E-mail: yangxl@hust.edu.cn
Figure S1. 1H NMR spectra of HES-SS-C18 with varied MS of C18.

Table S1. Characterization of HES-SS-C18 with varied MS of C18.

<table>
<thead>
<tr>
<th>Sample</th>
<th>MS_{C18} (%)</th>
<th>MS_{PDA} (%)</th>
<th>Diameter (nm)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HES-SS-C18</td>
<td>8.8</td>
<td>1.8</td>
<td>187.7 ± 3.5</td>
<td>0.28 ± 0.05</td>
</tr>
<tr>
<td>HES-SS-C18</td>
<td>7.1</td>
<td>3.6</td>
<td>162.3 ± 1.9</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>HES-SS-C18</td>
<td>5.1</td>
<td>5.3</td>
<td>31.3 ± 9.8</td>
<td>0.26 ± 0.08</td>
</tr>
</tbody>
</table>
Figure S2. Characterization of HES-SS-C18 with low MS of C18 (5.1 %). (A) Size distribution of HES 130/0.4 and HES-SS-C18 (MS_{C18} = 5.1 %) measured by DLS. (B) TEM image of individual HES-SS-C18 (MS_{C18} = 5.1 %) nanoparticles. (C) Size distribution of the particles in Figure B. (D) TEM image of large HES-SS-C18 (MS_{C18} = 5.1 %) NCs.

Figure S3. TEM image of HES-SS-C18 NCs with high MS of C18 (8.8 %).
Figure S4. Size and morphology characterization of HES-SS-C18 and iRGD-HES-SS-C18 NCs. (A) Size distribution of HES-SS-C18 NCs measured by DLS. (B) Size distribution of iRGD-HES-SS-C18 NCs measured by DLS. (C) TEM image of HES-SS-C18 NCs. (D) TEM image of iRGD-HES-SS-C18 NCs.

Figure S5. CAC determination of HES-SS-C18 and iRGD-HES-SS-C18. Intensity ratio (I_{337}/I_{334})
of pyrene excitation spectra as a function of log C for HES-SS-C18 (A) and iRGD-HES-SS-C18 (B) in deionized water. The concentration of pyrene was fixed at 6×10^{-7} mol/L.

![Figure S6](image)

Figure S6. (A) Stability of DOX@HES-SS-C18 and DOX@HES-SS-C18 NCs in PBS buffer (pH 7.4, 6.7 mmol/L). (B) Fluorescence spectra of free DOX, DOX@HES-SS-C18 NCs, and DOX@HES-SS-C18 NCs (10 µg/mL as DOX) in PBS buffer (pH 7.4, 6.7 mmol/L). Data represent the mean ± SD ($n = 3$).

![Figure S7](image)

Figure S7. Size changes of DOX@iRGD-HES-SS-C18 NCs after incubation with 20 mmol/L of DTT.
Figure S8. In vitro drug release profiles of DOX@HES-SS-C18 NCs in PBS buffer (pH 7.4, 10.0 mmol/L) with and without 20 mmol/L of DTT.
Figure S9. IC_{50} values of free DOX, DOX@HES-SS-C18 NCs, and DOX@iRGD-HES-SS-C18 NCs against HepG-2 (A, C, E) and 4T1 cells (B, D, F) after incubation for 6 h (A, B), 24 h (C, D), and 48 h (E, F). * p < 0.05, ** p < 0.01, *** p < 0.001. n.s. as not significant. Data represent the mean ± SD (n = 4).
The in vitro cytotoxicity of DOX-free HES-SS-C18 and iRGD-HES-SS-C18 NCs against HepG-2 and 4T1 cells was evaluated, as shown in Figure S10. The cell viability of HepG-2 and 4T1 cells treated with HES-SS-C18 and iRGD-HES-SS-C18 NCs (from 1 µg/mL to 1 mg/mL) are all over 90 %, indicating the excellent biocompatibility of our NCs.

Figure S10. In vitro cytotoxicity of HES-SS-C18 and iRGD-HES-SS-C18 NCs against HepG-2 (A) and 4T1 cells (B). Data represent the mean ± SD (n = 4).