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Formation Energies

Defect formation energies  were calculated at the DFT/PBE level using the expressionfE
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and , and the defect formation energies of 1.85 eV, 3.23 eV, 5.17 eV, 6.91 eV, 11.20 Max
W W  Min

Se Se 

eV, and 15.38 eV, for SV, DV, WV, T1, T2, and T3, respectively, were calculated, while for an Se rich 

environment, where  and , defect formation energies were 2.68 eV, 4.89 eV, 3.51 Max
Se Se  Min
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eV, 11.88 eV, 19.49 eV, and 26.98 eV, for SV, DV, WV, T1, T2, and T3 defects, respectively. The results 

for SV, DV, and WV agree with previous DFT calculations.1
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Table S1. RPA excitation energies for monolayer WSe2 with T1, T2, and T3 defects: D1, D2, D3, and D4 

bound excitons (in eV).

D1 D2 D3 D4

T1 1.28 1.00 0.64

T2 1.44 0.77 0.11

T3 1.26 1.12 0.83 0.10
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Figure S1. PBE+SOC band structures for monolayer WSe2 with a SV defect using (a) 221, (b) 331, 

(c) 441, and (d) 551 supercells. Defect bands are numerically labelled.
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Figure S2. Convergence of the absorption spectrum of monolayer WSe2 with a SV defect with respect to 

k-point sampling. Black, red, and green are for 331, 441, and 551 k samplings, respectively.
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Figure S3. PBE+SOC band structures for monolayer WSe2 with (a) SV, (b) DV, (c) WV, (d) T1, (e) T2, 

and (f) T3 defects. Bound defect bands are numerically labelled.
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Figure S4. Phonons in pristine 2D WSe2: (a) phonon dispersion, and (b) phonon eigenvectors for 1st order 

Raman active modes Eʹ and A1ʹ.
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