Supporting Information

Significantly Enhanced Magnetoresistance in Monolayer WTe$_2$ via Heterojunction Engineering: A First-principles Study

Lin Hu1,2, Lei Kang1, Jinlong Yang3, Bing Huang1,2,*, and Feng Liu2,4,*

1Beijing Computational Science Research Center, Beijing 100193, China
2Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
3Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
4Collaborative Innovation Center of Quantum Matter, Beijing 100084, China

* Correspondence to: F.L. (fliu@eng.utah.edu) or B.H. (bing.huang@csrc.ac.cn)
Figure S1. Charge density distributions of VBM (a) and CBM (b) of the graphene/WTe$_2$ heterojunction. For the charge density distribution iso-surface plot, the iso-value is 25 e/Bohr3. The yellow and gray balls represent Te and W atoms, respectively.
Table S1: Effective mass m^* (m_0 is the mass of an electron), elastic modulus C (eV/Å²) and deformation potential constant E_1 (eV), and room temperature carrier mobility μ ($\times 10^3$ cm²V⁻¹s⁻¹) of the isolated WTe₂ monolayer and the WTe₂/graphene heterojunction.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Carrier type</th>
<th>m^*</th>
<th>C</th>
<th>E_1</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTe₂ monolayer</td>
<td>a-axis</td>
<td>hole</td>
<td>0.88</td>
<td>7.70</td>
<td>-10.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electron</td>
<td>0.31</td>
<td>7.70</td>
<td>-4.23</td>
</tr>
<tr>
<td></td>
<td>b-axis</td>
<td>hole</td>
<td>0.54</td>
<td>9.15</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electron</td>
<td>0.25</td>
<td>9.15</td>
<td>-1.40</td>
</tr>
<tr>
<td>WTe₂/graphene</td>
<td>a-axis</td>
<td>hole</td>
<td>-</td>
<td>57.46</td>
<td>-3.66</td>
</tr>
<tr>
<td>heterostructure</td>
<td></td>
<td>electron</td>
<td>0.35</td>
<td>57.46</td>
<td>-6.78</td>
</tr>
<tr>
<td></td>
<td>b-axis</td>
<td>hole</td>
<td>-</td>
<td>58.31</td>
<td>-3.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electron</td>
<td>0.30</td>
<td>58.31</td>
<td>-3.15</td>
</tr>
</tbody>
</table>
For the weak case, we should consider a parallel equivalent circuits of resistors made of graphene and WTe$_2$ to obtain the total MR resistance. Then, the total resistance (R_t) is related to that of graphene (R_{gr}) and WTe$_2$ (R_{wt}) as follows: $1/R_t = 1/R_{gr} + 1/R_{wt}$. And, the $MR = \frac{R(H) - R(0)}{R(0)}$, $R(0)$ is the resistance when the external magnetic field equal to 0. We use the MR of WTe$_2$ (B^2 for parabolic dispersion) and graphene (B for a linear dispersion) and obtain:

\[
MR_{wt} = \frac{R_{wt}(H) - R_{wt}(0)}{R_{wt}(0)} = \mu_e^2 B^2, \quad (S1)
\]

\[
MR_{gr} = \frac{R_{gr}(H) - R_{gr}(0)}{R_{gr}(0)} = \mu_h B, \quad (S2)
\]

\[
MR_t = \frac{R_t(H) - R_t(0)}{R_t(0)}, \quad (S3)
\]

And,

\[
1 \frac{1}{R_t(0)} = \frac{1}{R_{wt}(0)} + \frac{1}{R_{gr}(0)}, \quad (S4)
\]

\[
1 \frac{1}{R_t(H)} = \frac{1}{R_{wt}(H)} + \frac{1}{R_{gr}(H)}, \quad (S5)
\]

Here we make an approximation that when there is no external magnetic field, $R_{wt}(0) \approx R_{gr}(0) = R$. Because both graphene and WTe$_2$ are semimetals, when there is no external magnetic field, their resistances are very small. From (S4), we can obtain $R_t(0) = R/2$. Then, we can rewrite (S1-3) as:

\[
R_{wt}(H) = (\mu_e^2 B^2 + 1)R, \quad (S6)
\]

\[
R_{gr}(H) = (\mu_h B + 1)R, \quad (S7)
\]

\[
R_t(H) = \frac{(MR_t + 1)R}{2}, \quad (S8)
\]

Combine equations of (S5-8), we obtain the total MR as:

\[
MR_t = \frac{2\mu_h \mu_e^2 B^3 + \mu_e^2 B^2 + \mu_h B}{\mu_e^2 B^2 + \mu_h B + 2}, \quad (S9)
\]
Figure S2. Top and side views of the geometric structure of the WTe$_2$/graphene heterojunction with different angle, θ. (a)(b) and (c)(d) show the $\theta = 30^\circ$ (a 2×7 supercell of WTe$_2$ is used to match a $5 \times 6\sqrt{3}$ supercell of graphene) and $\theta = 10.8^\circ$ (a 2×6 supercell of WTe$_2$ is used to match a $2\sqrt{2} \times 2\sqrt{7}$ supercell of graphene) heterojunction for top and side view, respectively; a, b and c represent the lattice vectors. Brown, yellowish and gray balls represent C, Te and W atoms, respectively.
Table S2: Effective mass m^* (m_0 is the mass of an electron), elastic modulus C (eV/Å²) and deformation potential constant E_1 (eV), room temperature carrier mobility μ ($\times 10^3$ cm²V⁻¹s⁻¹) and MR when the external magnetic field $B=14.7$T of the WTe₂/graphene heterostructure with different angle θ.

<table>
<thead>
<tr>
<th>θ</th>
<th>Carrier type</th>
<th>m^*</th>
<th>C</th>
<th>E_1</th>
<th>μ</th>
<th>$\mu_e \mu_h$</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>hole</td>
<td>-</td>
<td>58.31</td>
<td>-3.50</td>
<td>126.67</td>
<td>1877.25</td>
<td>4056.54</td>
</tr>
<tr>
<td></td>
<td>electron</td>
<td>0.30</td>
<td>58.31</td>
<td>-3.15</td>
<td>14.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8°</td>
<td>hole</td>
<td>-</td>
<td>62.07</td>
<td>-3.79</td>
<td>115.60</td>
<td>1406.85</td>
<td>3040.06</td>
</tr>
<tr>
<td></td>
<td>electron</td>
<td>0.33</td>
<td>62.07</td>
<td>-3.26</td>
<td>12.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°</td>
<td>hole</td>
<td>-</td>
<td>57.36</td>
<td>-3.65</td>
<td>115.18</td>
<td>299.46</td>
<td>647.12</td>
</tr>
<tr>
<td></td>
<td>electron</td>
<td>0.33</td>
<td>57.36</td>
<td>-6.77</td>
<td>2.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>