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ESI Fig. S1. Key fabrication process steps of FET-type sensor.
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ESI Fig. S2. Characterization of the sensing material. (a) SEM micrograph (×100 k) and (b) EDS spectrum of the 1 wt% Pt‒In2O3 nanoparticles.
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ESI Fig. S3. Schematic of the gas measurement system. 
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ESI Fig. S4. Equivalent circuit of FET-type sensor. (a) Cross-sectional schematic view cut along channel width direction. (b) Equivalent circuit 
of the device cut along A‒A’ in (a). RC and Rs represent the resistances of the contact and sensing layer, respectively. Cs, Cpass, Cp, and CFG 
denote the sensing layer capacitance, the capacitance between the sensing layer and the FG, the parasitic capacitance between the FG and 
the Si substrate, and the capacitance between the FG and the Si channel, respectively. Here, the overlap and fringing capacitances between 
the FG and the source/drain are ignored because they are too small.
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ESI Table S1. Formula of coupling ratio (γ) and drain current (ID) in our FET-type sensor. Here, the effects of RC (≪1) and Rs (≫1) in 
Supplementary Fig. 1(b) are ignored. In order to ensure high sensitivity, γ needs to be close to 1, which indicates that Cs//Cpass should be 
much larger than Cp+CFG. Because the CG and FG have an interdigitated pattern, the γ value of the platform sensor is generally higher than 
that of a conventional gas sensor having an air gap between the CG and the FG. 
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ESI Fig. S5. Humidity sensing characteristics in fabricated FET-type sensor. (a) Humidity responses of 1 wt% Pt-In2O3 FET-type sensor with 
relative humidity (RH) changed from 17.5 RH% to 78.0 RH% at room temperature (25 oC). VCG - Vth is set to 0.3 V at VDS = -0.1 V. (b) Humidity 
response versus RH%. As the RH% increases to 78.0 RH%, H2O molecules act as an electron donor, and then work-function of the In2O3 layer 
decreases. As a result, |ID| decreases, resulting in decreasing response.
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ESI Fig. S6. Stability of the fabricated FET-type sensor. (a) Transfer (ID–VCG) curves and (b) Transient responses to 20% and 30% O2 gas 
measured after 5 months (red line) at 25 oC, compared to the reference (black line). After 5 months, the transfer curve in (a) shifts to the 

right and the off-current in (a) is increased by about 1 order. As a result, the reference ID level is changed (~ 1.55 μA), but there is not 
meaningful difference in the O2 sensing characteristics.
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ESI Fig. S7. Vth change of FET-type sensor with temperature (T) change in O2 ambience. (a) Transfer (ID–VCG) curves measured by applying VCG 
pulses and (b) Vth changes for fabricated FET-type sensor in pure N2 and 30% O2 ambience as a parameter of T. At 25 oC, the transfer curve 
is shifted to the left when the chamber environment is changed from pure N2 to 30% O2. At 200 oC, on the other hand, the transfer curve is 
shifted to the right. These results demonstrate that T determines the dominance between the two sensing mechanisms, i.e., physisorption 
and chemisorption.
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ESI Fig. S8. Pulse scheme to apply pre-bias to FET-type sensor. Control-gate and drain are biased by pulse generator, and source is grounded. 
Red line represents a series of pulses applied to the CG and drain. The pre-bias time (tpb) and read pulse width (tread) are fixed to 5 s and 500 
μs, respectively.
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ESI Fig. S9. SEM image of the resistor-type sensor. The sensing layer prepared by inkjet-printing is indicated by a dash-dot line.
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ESI Fig. S10. Responses of the fabricated sensor to the eight target gases (O2, H2, NO2, H2S, CO, CO2, NH3, and CH4) at 25 oC in 10 wt% Pt‒In2O3 
sensor. The measurements are carried out in dry ambience.


