Supporting information

Extraordinary Lithium Ions Storage Capabilities Achieved by SnO$_2$
Nanocrystals Exposed of \{221\} Facets

Bomin Li, Yan Yan*, Chentong Shen, Yang Yu, Qinghong Wang, Mingkai Liu*

School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China;

E-mail: liumingkai@jsnu.edu.cn; yanyan@jsnu.edu.cn;

Fig. S1 Optical photos of (a) pure G/CNT film and (b) its flexibility.
Fig. S2 SEM images of pure G/CNT film with good porous structures at (a) low and (b) high magnifications.
Fig. S3 SEM image of pure G/CNT matrix with CNTs bonded on the surface of graphene sheets.
Fig. S4 XRD pattern of pure G/CNT film.
Fig. S5 N$_2$ adsorption / desorption isotherms of pure SnO$_2$-O nanoparticles.
Fig. S6 \(\text{N}_2 \) adsorption / desorption isotherms of pure G/CNT film.
Fig. S7 TGA curves of (a) C/SnO$_2$-D, (b) C/SnO$_2$-O, (c) C/SnO$_2$-EO and (d) C/SnO$_2$-I films, which indicate that the SnO$_2$ nanoparticles in these films were near ~54.4 wt%.
Fig. S8 CV curves of pure G/CNT film on the 1st, 2nd and 5th cycles at 0.1 mV/s.
Fig. S9 Discharge / charge curves of G/CNT film on the 1st, 2nd and 5th cycles at 0.1 A/g.
Fig. S10 Equivalent circuit model used to fit the experimental data.
Fig. S11 Current-voltage curve of a fiber-shaped C/SnO$_2$-O material with a scan rate of 100 mV/s.