Engineered Nanoceria cytoprotection In Vivo: mitigation of Reactive Oxygen Species and Double-stranded DNA breakage due to Radiation Exposure

Soumen Das ††1, Craig J. Neal †1, Julian Ortiz1, Sudipta Seal1,2*

1Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA
2College of Medicine, University of Central Florida, Orlando, FL 32816, USA
†these authors contributed equally

*Corresponding author: Sudipta Seal, sudipta.seal@ucf.edu
University of Central Florida, Engineering 1, Rm 207
P.O. Box 162455; Orlando, FL 32816
Present Addresses
† Aviana Molecular Therapeutic
3251 Progress Drive, Orlando, FL 32826
Supplemental Figure 1. X-ray Photoelectron spectroscopy. Cerium oxide nanoparticles were analyzed for binding energy at values particular for Ce$^{3+}$ and for Ce$^{4+}$. Calculating these values in ratio allows the determination of Ce$^{3+}$:Ce$^{4+}$. This formulation of CNPs shows a very high portion of Ce$^{3+}$, suggestive of cyto-protective radical oxygen scavenging activity.

*Corresponding author: Sudipta Seal, sudipta.seal@ucf.edu
University of Central Florida, Engineering 1, Rm 207
P.O. Box 162455; Orlando, FL 32816
Present Addresses
† Aviana Molecular Therapeutic
3251 Progress Drive, Orlando, FL 32826