Supporting information for

1D Alloy Ultrafine Pt-Fe Nanowires as Efficient Electrocatalysts for Alcohol Electrooxidation in alkaline media

Pingping Song, a Hui Xu, a Jin Wang, a Yangping Zhang, a Fei Gao, a Jun Guo, b Yukihide Shiraishi, c and Yukou Du**

a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
b Testing & Analysis Center, Soochow University, Jiangsu 215123, China.
c Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan

*These authors contributed equally to this work

* Corresponding author: Tel: 86-512-65880089, Fax: 86-512-65880089; E-mail: duyk@suda.edu.cn (Y. Du).

Experimental Section

Chemicals

Platinum(II) acetylacetonate (Pt(acac)₂, reagent grade, 97%), Iron(II) acetate (Fe(Ac)₂, reagent grade, 95%), Tungsten carbonyl (W(CO)₆, reagent grade, 99%), oleylamine (CH₃(CH₂)₇CH=CH(CH₂)₇CH₂NH₂, OAm, 68-70%) and 1-octadecene (C₁₈H₃₆, ODE, reagent grade, 90%) were all purchased from Sigma-Aldrich. N-Hexadecyltrimethylammonium Chloride (CH₃(CH₂)₁₅N(Cl)(CH₃)₃, CTAC, >97.0%) and Phloroglucinol (C₆H₆O₃, ≥99%) were purchased from Aladdin. Glucose (C₆H₁₂O₆, reagent grade, 97%) and ascorbic acid (C₆H₈O₆, AA, reagent grade, 99%) were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). The commercial Pt/C (20 wt%, 3 nm Pt nanoparticles) was purchased from Johnson Matthey Corporation. All the chemicals were used as received without further purification. The water (18 MΩ/cm) used in all experiments was prepared by passing through an ultra-pure purification system (Aqua Solutions).
Preparation of ultrafine Pt$_3$Fe, Pt$_2$Fe and Pt$_4$Fe nanowires (NWs):
In a typical preparation of ultrafine Pt$_3$Fe NWs, Pt(acac)$_2$ (10 mg), Fe(Ac)$_2$ (1.4 mg), W(CO)$_6$ (5 mg), glucose (50 mg), CTAC (32 mg), 3 mL oleylamine and 2 mL ODE were added into a glass vial (volume: 30 mL). After the vial had been capped, the mixture was ultrasonicated for 0.5 h. The resulting homogeneous mixture was then heated from room temperature to 180 °C and maintained at 180 °C for 5 h in an oil bath. The products were collected by centrifugation and washed three times with cyclohexane/ethanol mixture. The preparation of ultrafine Pt$_2$Fe NWs and Pt$_4$Fe NWs were achieved by changing the amounts of Fe(Ac)$_2$ to 2.1 mg and 1 mg, respectively, while keeping the other parameters the same.

Preparation of ultrafine Pt$_3$Fe NWs/C, Pt$_2$Fe NWs/C and Pt$_4$Fe NWs/C:
The products of ultrafine Pt$_3$Fe NWs, Pt$_2$Fe NWs and Pt$_4$Fe NWs were collected by centrifugation and washed three times with cyclohexane/ethanol mixture. Then, we loaded the catalysts on carbon black (Vulcan XC72R carbon, C) by sonication and washed with ethanol at room temperature twice. Finally, the sample is centrifuged and dried.

Characterizations
The samples were prepared by dropping cyclohexane dispersion of samples onto carbon-coated copper transmission electron microscopy (TEM) grids using pipettes and dried under ambient condition. Low-magnification TEM was conducted on a HITACHI HT7700 TEM at an acceleration voltage of 120 kV. The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was conducted on a FEI Tecnai F20 TEM at an accelerating voltage of 200 kV. PXRD pattern was collected on X’Pert-Pro MPD diffractometer (Netherlands PANalytical) with a Cu Kα X-ray source (λ = 1.540598 Å). X-ray photoelectron spectroscopy spectra (XPS) were conducted on a Thermo Scientific ESCALAB 250 XI X-ray photoelectron spectrometer. The concentration of all the catalysts was determined by the ICP-AES (710-ES, Varian).

Ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR) measurements
A three-electrode cell was used for the electrochemical measurements. A glassy-carbon electrode (GCE) (diameter: 3 mm, area: 0.07 cm²) from Pine Instruments was used as the working electrode, a saturated calomel electrode (SCE) was used as the reference electrode and a Pt wire was used as the counter electrode, respectively. To prepare the catalyst-coated working electrode, the catalyst was dispersed in a mixture containing isopropanol and Nafion (5%) to form a 0.40 mgPt/mL dispersion. 5 μL isopropanol dispersion of ultrafine Pt₁Fe NWs, Pt₂Fe NWs or Pt₃Fe NWs on C (0.40 mgPt/mL) was deposited on a glassy carbon electrode to obtain the working electrode after the solvent was dried naturally. We have conducted the CV measurements of ultrafine Pt-Fe NWs and commercial Pt/C in the 1 M KOH solution. EGOR was conducted in 1.0 M KOH + 1.0 M EG solution. GOR was conducted in 1.0 M KOH + 1.0 M glycerol solution. The scan rates for EGOR and GOR were 50 mV/s. The durability test was performed at room temperature by applying the CV at sweep rate of 50 mV/s for 250 cycles. All electrochemical experiments were performed at room temperature. For comparison, the commercial Pt/C was used as the baseline catalyst, and the same procedure as described above was applied to conduct the electrochemical measurements. Current-time (I-t) curves and electrochemical impedance spectroscopy (EIS) conducted by electrochemical work station. For detailed information, the EIS measurements were taken in frequency range of 100/kHz Hz at 0.25 V with an AC amplitude of 5 mV carried out on CHI 760E No.413187 electrochemical workstation fabricated by Chen Hua Instrumental Corp (Shanghai, China).

Supporting Figures and Table
Fig. S1 (a, b) TEM images of the products with the same reaction conditions as that of ultrafine Pt$_3$Fe NWs but in absence of Fe(Ac)$_2$.
Fig. S2 TEM images of the products with the same reaction conditions as that of ultrafine Pt$_3$Fe NWs except the use of (a, b) 0 mg W(CO)$_6$, (c, d) 0 mg glucose and (e, f) 0 mg CTAC.
Fig. S3 TEM images of the products with the same reaction conditions as that of ultrafine Pt$_3$Fe NWs but changing glucose into (a, b) 50 mg AA, (c, d) 50 mg phloroglucinol.
Fig. S4 TEM images of the products with the same reaction conditions as that of ultrafine Pt_3Fe NWs except the use of (a, b) 5 mL OAm, (c, d) 4 mL OAm : 1mL ODE and (e, f) 2 mL OAm : 3mL ODE.
Fig. S5 (a, b) Additional TEM images of the ultrafine Pt\textsubscript{3}Fe NWs.

Fig. S6 (a) TEM image and (b) the diameter distribution of ultrafine Pt\textsubscript{3}Fe NWs.
Fig. S7 XPS spectra of ultrafine Pt$_3$Fe NWs. (A) Pt 4f, (B) Fe 2p, (C) C 1s, (D) O 1s XPS spectra, respectively.
Fig. S8 Additional TEM images of (a, b) the ultrafine Pt$_2$Fe NWs and (c, d) the ultrafine Pt$_4$Fe NWs.
Fig. S9 (a, b) TEM image and diameter distribution of Pt$_2$Fe NWs, (c, d) TEM image and diameter distribution of Pt$_4$Fe NWs.

Fig. S10 XRD patterns of ultrathin Pt$_3$Fe NWs, Pt$_2$Fe NWs, Pt$_4$Fe NWs.
Fig. S11 XPS spectra of ultrafine Pt₂Fe NWs and ultrafine Pt₄Fe NWs. (A) Pt 4f, (B) Fe 2p.

Fig. S12 Representative TEM images of the ultrafine Pt₃Fe NWs intermediates obtained after the reaction have been processed for (a) 10 min, (b) 30 min, (c) 1 h, (d) 2 h, (e) 3 h and (f) 5 h.
Fig. S13 SEM-EDX spectrum of the ultrafine Pt$_3$Fe NWs intermediates obtained after the reaction have been processed for (a) 10 min, (b) 30 min, (c) 1 h, (d) 2 h, (e) 3 h and (f) 5 h.
Fig. S14 The CV curves of ultrafine Pt$_3$Fe NWs, Pt$_2$Fe NWs, Pt$_4$Fe NWs and commercial Pt/C in 1 M KOH solution.

Fig. S15 The mass and specific activities of different catalysts for EGOR.
Fig. S16 CV curves of (a) ultrafine Pt$_3$Fe NWs, (b) ultrafine Pt$_2$Fe NWs, (c) ultrafine Pt$_4$Fe NWs and (d) Pt/C for EGOR for 250 cycles. Potential CV was scanned in 1 M KOH and 1 M EG solution at 50 mV s$^{-1}$.

Fig. S17 The mass and specific activities of different catalysts for GOR.
Fig. S18 CV curves of (a) ultrafine Pt$_3$Fe NWs, (b) ultrafine Pt$_2$Fe NWs, (c) ultrafine Pt$_4$Fe NWs and (d) Pt/C for GOR for 250 cycles. Potential CV was scanned in 1 M KOH and 1 M glycerol at 50 mV s$^{-1}$.

Fig. S19 Representative TEM images of (a) ultrafine Pt$_3$Fe NWs, (b) ultrafine Pt$_2$Fe NWs and (c) ultrafine Pt$_4$Fe NWs catalysts before electrochemical durability test.
Fig. S20 Representative TEM images of (a) ultrafine Pt$_3$Fe NWs, (b) ultrafine Pt$_2$Fe NWs and (c) ultrafine Pt$_4$Fe NWs catalysts after electrochemical durability test.

Fig. S21 SEM-EDX spectrum of (a) ultrafine Pt$_3$Fe NWs, (b) ultrafine Pt$_2$Fe NWs and (c) ultrafine Pt$_4$Fe NWs catalysts after electrochemical durability test.
Fig. S22 TEM images of Pt/C (a, b) before and (c, d) after 250 cycles in 1 M KOH containing 1 M glycerol at 50 mV s$^{-1}$.
Table S1 Comparison of ultrafine Pt$_3$Fe NWs catalysts with other Pt-based electrocatalysts for the EGOR.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Peak currents from CV curves</th>
<th>Electrolytes</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J_m (A/mg$_{Pt}$)</td>
<td>J_s (mA/cm2)</td>
<td>Electrolytes</td>
</tr>
<tr>
<td>Ultrafine Pt$_3$Fe NWs</td>
<td>3.56</td>
<td>16.53</td>
<td>1 M KOH + 1 M EG</td>
</tr>
<tr>
<td>PtNi${0.67}$Pb${0.26}$ NWs/C</td>
<td>0.42</td>
<td>0.65</td>
<td>0.1 M HClO$_4$ + 0.2 M EG</td>
</tr>
<tr>
<td>PtRu alloy</td>
<td>3.052</td>
<td>~</td>
<td>1.0 M KOH + 1.0 M EG</td>
</tr>
<tr>
<td>Pt$_{96}$Sn$_4$</td>
<td>~</td>
<td>1.4</td>
<td>1 M KOH + 0.1 M EG</td>
</tr>
<tr>
<td>Pt$_{88}$Ru$_6$Sn$_6$</td>
<td>~</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Pt-Sn Nanocrystals/CNT</td>
<td>0.22</td>
<td>~</td>
<td>0.5 M H$_2$SO$_4$ + 1 M EG</td>
</tr>
<tr>
<td>Pt$_{4.5}$Pb NWs</td>
<td>0.73</td>
<td>0.30</td>
<td>0.1M HClO$_4$ + 0.5 M EG</td>
</tr>
<tr>
<td>Pt$_{5.7}$Pb NWs</td>
<td>0.63</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>