Supporting Information for

Precise Mono-Cu+ Ion Doping Enhanced Electrogenerated chemiluminescence from Cd-In-S Supertetrahedral Chalcogenide Nanocluster for Dopamine Detection

Feng Wang,†ab Jian Lin,†c Hongye Wang,b Shansheng Yu,a Xiaoqiang Cui,*a Asghar Ali,b Tao Wu,c and Yang Liu*b

a Key Laboratory of Automobile Materials of MOE and Department of Materials Science, Jilin University, Changchun, 130012, China

b Department of Chemistry, Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Laboratory for Micro analytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China

c College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China

†These authors contributed equally to this work

*Corresponding author

Tel: 86-10-62798187; Fax: 86-10-62771149

E-mail addresses: liu-yang@mail.tsinghua.edu.cn, xqcui@jlu.edu.cn
Fig. S1 The single crystal X-ray diffraction (XRD) patterns of ○@CdInS, Cu@CdInS and Mn@CdInS.

Fig. S2 The effect of pH on ECL intensity of Mn@CdInS NCs modified GCE in 0.1 M PBS in air.
Fig. S3 The ECL-potential curves of Cu@CdInS NCs modified GCE in 0.1 M PBS (a) and it with 1 mM dopamine (b) in air. Scan rate is 100 mV/s, the photomultiplier tube (PMT) was biased at 750 V.

Fig. S4 The Zeta-potential distributions of Cu@CdInS NCs in ultrapure water.
Fig. S5 The ECL response of Cu@CdInS NCs in different solution. I_0 is ECL intensity in 0.1 M PBS in air, I are ECL intensities in 0.1 M PBS containing dopamine (DA), phenylethylamine (PEA), Hydroxylamine, Glucose (Glc), Glutamic acid (Glu), tyrosine (Tyr), phenylalanine and Alanine (Ala) with the same concentration of 500 μM respectively.

Table S1 The comparison of dopamine detection with label-free base on ECL of nanomaterials.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Linear range (μM)</th>
<th>Limit of detection (μM)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag$_2$Se quantum dot</td>
<td>0.5-19</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>BSA-AuNC/ITO</td>
<td>2.5-47.5</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>CdSe quantum dot</td>
<td>0.5-700</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>CdSeTe/ZnS core–shell QDs</td>
<td>3.7-450</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Met-AuNCs</td>
<td>0.1-4</td>
<td>0.032</td>
<td>5</td>
</tr>
<tr>
<td>Cu@CdInS NCs</td>
<td>0.5-100</td>
<td>0.335</td>
<td>This work</td>
</tr>
</tbody>
</table>
Reference