Rational design of metal organic frameworks-derived FeS$_2$ hollow nanocages@reduced graphene oxide for K-ion storage

Junpeng Xie,a Yongqian Zhu,a Ning Zhuang,a Hang Lei,ab Weiling Zhuc, Yong Fu,a

Muhammad Sufyan Javed,a Jinliang Li,*a Wenjie Mai*$_a$

aSiyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou 510632, People's Republic of China. E-mail: lijinliang@email.jnu.edu.cn (Jinliang Li); wenjiemai@gmail.com (Wenjie Mai)

bDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China.

cSchool of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, People's Republic of China.

Figure S1 SEM image of PB@GO.
Figure S2 XRD patterns of PB@GO and Fe@RGO.

In the XRD pattern of Fe@RGO, a broad peak at 26° is attributed to (002) facets of RGO. Other diffraction peaks are assigned to Fe (JCPDS card No. 87-0722) and FeN$_{0.0324}$ (JCPDS card No. 75-2127). The result demonstrates that the RGO and Fe have been reduced after thermal treatment. The formation of FeN$_{0.0324}$ is mainly due to the existence of N element in PB. According to the previous reports, during annealing progress in N$_2$ or Ar atmosphere, transition metal anions will be reduced into pure transition metal, and CN- group linkers will form carbon compounds [1-3]. Furthermore, RGO is also an excellent reducing agent in high temperature, which is helpful for the reduction of Fe ion. Such phenomenon has been reported in other Co-Fe alloys, Ni-Fe alloys [1-3].
Figure S3 TGA curves of FeS\textsubscript{2}@C, FeS\textsubscript{2}@RGO-1, FeS\textsubscript{2}@RGO-2 and FeS\textsubscript{2}@RGO-3.

TGA curves were carried out to evaluate the carbon content in the composite, as shown in Fig. S3. After being heated to 700 °C, the weights of the samples become stable, and 63.4%, 59.0%, 53.8% and 32.9% of the original weight are left for the final products for FeS\textsubscript{2}@C, FeS\textsubscript{2}@RGO-1, FeS\textsubscript{2}@RGO-2, FeS\textsubscript{2}@RGO-3, respectively. Due to the oxidation of FeS\textsubscript{2} to Fe\textsubscript{2}O\textsubscript{3} while the carbon to carbon dioxide, the carbon content of FeS\textsubscript{2}@C, FeS\textsubscript{2}@RGO-1, FeS\textsubscript{2}@RGO-2, FeS\textsubscript{2}@RGO-3 can be calculated, and corresponding values are 4.9%, 11.5%, 19.3% and 50.7%.
Figure S4 SEM images of (a) FeS$_2$@C, (b) FeS$_2$@RGO-1 and (c) FeS$_2$@RGO-3

Figure S5 Coulombic efficiencies of FeS$_2$@C, FeS$_2$@RGO-1, FeS$_2$@RGO-2 and FeS$_2$@RGO-3 at 50 mA g$^{-1}$.
Figure S6 Long-term cycling performance of FeS$_2$@RGO-1 at 500 mA g$^{-1}$

Figure S7 Galvanostatic charge-discharge curves of FeS$_2$@RGO-2 electrode at different current densities.
Figure S8 EIS of FeS$_2$@C, FeS$_2$@RGO-1, FeS$_2$@RGO-2 and FeS$_2$@RGO-3 after 10 cycles.

Figure S9 (a) HRTEM image of FeS$_2$@RGO-2 electrode when charging to 3.0 V and (b) the corresponding SAED image in the first cycle.
Figure S10 SEM images of FeS$_2$@RGO-2 electrodes. (a)-(b) before cycles, (c)-(d) after a number of cycles.

Reference