Interfacing Enzymes with Silicon Nanocrystals through the Thiol-Ene Reaction

Christopher Jay T. Robidillo,¹,² Maryam Aghajamali,¹ Angelique Faramus,¹ Regina Sinelnikov,¹
Jonathan G.C. Veinot¹*

¹Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

²Department of Physical Sciences and Mathematics, University of the Philippines Manila, P. Faura Street, Ermita, Manila 1000, Philippines

*Corresponding author; Email: jveinot@ualberta.ca
Supplementary Information

Figure S1. FTIR spectrum of hydride-terminated silicon nanocrystals (H-SiNCs).
Figure S2. Survey XP spectra of ene-SiNCs (A) before and (B) after background correction. Notice that the material does not contain nitrogen (i.e., absence of N 1s peak at ca. 400 eV), as expected.
Figure S3. (A) BSE/SEM images and (B) EDX mapping of Lse-SiNCs and Use-SiNCs on a carbon tape. The brighter regions in the BSE/SEM images correspond to enz-SiNCs as confirmed by EDX mapping.
Figure S4. Photoluminescence decay plots of (A) ene-SiNCs, (B) Lse-SiNCs, and (C) Use-SiNCs. The lifetimes were calculated using lognormal fitting.
Table S1. Absolute quantum yields of ene-SiNCs, Lse-SiNCs, and Use-SiNCs ($\lambda_{ex} = 365$ nm).

<table>
<thead>
<tr>
<th>SiNCs</th>
<th>Absolute Quantum Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ene-SiNCs</td>
<td>39.1 ± 4.0</td>
</tr>
<tr>
<td>Lse-SiNCs</td>
<td>47.1 ± 3.5</td>
</tr>
<tr>
<td>Use-SiNCs</td>
<td>43.7 ± 1.0</td>
</tr>
</tbody>
</table>