Electronic Supplementary Information

Sonication-enabled Rapid Production of Stable Liquid Metal Nanoparticles Grafted with Poly(1-octadecene-alt-maleic anhydride) in Aqueous Solutions

Yiliang Lina, Jan Genzera, Weihua Lib, Ruirui Qiaoc, Michael D. Dickey*a, Shi-Yang Tang*b

aDepartment of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.

Email: mddickey@ncsu.edu

bSchool of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Australia

E-mail: shiyang@uow.edu.au

cARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia

Keywords: Liquid metal; EGaIn; Nanoparticles; Functional material; Sonication
Figure S1. TEM and CBED images of the EGaIn NP. No diffraction pattern can be observed, indicating that NPs remains in a liquid state.
Investigating the Thickness of the POMA Polymer Coating

Figure S2. (a) Representative HAADF images of the POMA grafted LM NPs on a TEM grid coated with a lacey carbon film. (b) Hydrodynamic size distributions of the trisodium citrate and POMA coated EGaIn NPs within DI water; the inset shows the SEM image of the trisodium citrate coated LM NPs.
Control Experiments

Figure S3. Liquid metal NP suspension 48 h after production using a) 50 µL EGaIn + 5 mL DI water, b) 50 µL EGaIn + 5 mL DI water + 5 mg POMA, c) 50 µL EGaIn + 5 mL DI water + 100 µL toluene, d) 50 µL EGaIn + 5 mL DI water + 5mg POMA + 100 µL Toluene, e) 50 µL Ga$_{20}$In$_{80}$ + 5 mL DI water + 5 mg POMA + 100 µL Toluene, and f) 50 µL EGaIn + 5 mL DI water + 5 mg POMA + 200 µL Toluene.
Brushed polyethylene glycol (bPEG) grafted EGaIn NPs

Figure S4. Scheme of the conjugation between bPEG molecules and EGaIn particle [1].
Figure S5. EDS spectrum for PMVEMA grafted EGaIn NPs 5 days after production.
Figure S6. Images of bPEG and POMA grafted LM NPs before and after adding HCl solution to yield a concentration of (a) 0.05 M, and (b) 1 M. It is clear that the hydrophobic insulating layer on POMA grafted NPs can significantly enhance the resistance of etching from strong acid.
Grafting other NPs with POMA

Figure S7. a) Zeta potential obtained for EGaIn, Fe$_2$O$_3$, TiO$_2$, WO$_3$ NPs produced using sonication with or without POMA grafting. b) Fe$_2$O$_3$ NP, and c) WO$_3$ suspension with or without POMA grafting 5 days after sonication.
Stability of POMA grafted EGaIn NPs in 1-3× PBS buffers

Figure S8. (a) Hydrodynamic size distribution of the POMA grafted EGaIn NPs within 1×, 2× and 3× PBS buffers. (b) Precipitation of LM NPs in 3× PBS buffer over a period of 24 h.
Cytotoxicity of the POMA Grafted LM NPs

Figure S9. The effect of concentration for NPs grafted with POMA on the survival rates of CHO cells.

CHO cells were grown in Dulbecco’s Modified Eagle Media (DMEM) culture media with 10% Fetal Bovine Serum (FBS). CHO cells (1×10^4 cells/well) were exposed to the LM NPs with different concentrations for 24 h in 96-well plates, with the final volume of 100 µL. Cell culture medium was used as a control. After exposure, we removed the suspensions and incubated the cells with 10% Alamar Blue (Invitrogen) for 4 h at 37 °C. We used a microplate reader (CLARIOstar, BMG LABTECH) to read the fluorescence at 500 nm (excitation) and 530 nm (emission). Background values (10% Alamar Blue in cell culture medium) were subtracted from each well and the average fluorescent intensity of the triplicates was calculated.

References