SUPPLEMENTARY INFORMATION

High-specificity Double-stranded DNA Detection with "Humanoid" Molecular Beacon and TALEs

Yu Wang,[‡]^a Jialei Baia,[‡]^a Xiaochen Qu,^a Yifei Gao,^b Jiang Wang,^a Shuang Li,^a Longxing Fan,^{ac} Haiping Wei,^d Sha Liu,^{ae} Yuan Peng,^a Zihan Gao,^a Yulin Zhu,^a Zhixian Gao^{*a} and Baoan Ning^{*a}

^a Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin 300050, P.R. China

^b School of chemistry, University of New South Wales, Sydney, Australia

^c MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry, Fuzhou University, Fujian 350108, P. R. China

^d School of Tourism Management, Tianjin Vocational Institute, Tianjin 300350, P.R. China

^e School of Public Health, Hebei Medical University, Shijiazhuang 050017, P.R. China

SUPPLEMENTARY FIGURES

Fig. S1 E. coli 16S rDNA amplification electropherogram, marker: 200bp DNA Leader.

0		I TEROIDATACHDOCKOAL ETVORI I BIG COANCI TEROIDATACHDOCKOAL ETVORI I	100
query		LTPEQVVALASHDGGKQALETVQRLLFVLCQAHGLTPEQVVALASHDGGKQALETVQRLL	100
Sbjet	1	LTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLL	180
Query	181	PVLCQAHGLTPEQVVATASHDGGKQALETVQRLLPVLCQAHGLTPEQVVATASHDGGKQA PVLCQAHGLTPEQVVATASHDGGKQALETVQRLLPVLCQAHGLTPEQVVATASHDGGKQA	360
Sbjet	181	PVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQA	360
Query	361	LETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIA	540
Chint	261	LETVQRLLPVLCQAHGLTPEQVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIA	540
Sbjet	361	TEI AÖVITLA DEÖVUGFIL EÖA AVIVENI GÖVÖVTEI AÖVITLA DEÖVUGFIL EÖA AVIV	540
Query	541	SHDGGKQALETVQRLLPVLCQAHGLTPEQVVALASNNGGKQALETVQRLLPVLCQAHGLT SHDGGKQALETVQRLLPVLCQAHGLTPEQVVALASNNGGKQALETVQRLLPVLCQAHGLT	720
Sbjet	541	SHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNNGGKQALETVQRLLPVLCQAHGLT	720
Query	721	PEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHGGGKQALETVQRLLPV	900
Sbjet	721	PEQVVALASHDOGKQALETVQRLLPVLCQAHGPYPEQVVALASHOGGKQALETVQRLLPV	900
Query	901	LCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGKQALE	1080
Sbjet	901	LCQAHGLTPEQVVAIASNGGGKQALETVQRLLPVLCQAHGLTPEQVVAIASNGGGKQALE	1080
Query	1081	TVQRLLPVLCQAHGLTPEQVVATASHDGGKQALETVQRLLPVLCQAHGLTPEQVVATASH TVQRLLPVLCQAHGLTPEQVVATASHDGGKQALETVQRLLPVLCQAHGLTPEQVVATASN	1260
Sbjet	1081	TVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPEQVVAIASN	1260
Query	1261	NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPE	1440
Sbjet	1261	NGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLCQAHGLTPE	1440
Query	1441	QVVATASNIGGKQALETVQRLLPVLCQAHGLTPEQVVATASHDGGKQALETVQRLLPVLC QVVATASNIGGKQALETVQRLLPVLCQAHGLTPEQVVATASHDGGKQALETVQRLLPVLC	1620
Sbjet	1441	QVVAIASNIGGKQALETVQRLLPVLCQAHGLTPEQVVAIASHDGGKQALETVQRLLPVLC	1620
Query	1621	QAHG 1632	
Sbjet	1621	QAHG 1632	

Fig. S2 Assembled TALEs repeat unit amino acid sequences.

Fig. S3 Double enzyme digestion of pMD18-T-TALEs.

Fig. S4 TALEs renaturation results: 1 was bacterial broken precipitate; 2 was bacterial broken supernatant; 3 was renatured soluble TALEs.

Fig. S5 Protein quantitative standard curve of TALEs.

Fig. S6 (a) RPA amplification results for different primers; (b) electrophoresis identification after purification of RPA-F/R4 amplification product.

Fig. S7 Plate count of E.coli.

Fig. S8 Standard curve of RT-PCR E. coli detection.

Fig. S9 Highly specific detection of E. coli 16 S rDNA allows for the differentiation of other bacteria and mismatched DNA.

SUPPLEMENTARY TABLES

Primer	DNA Sequence $(5'-3')$
RPA-F1	GCCTAACACATGCAAGTCGAACGGTAACAG
RPA-R1	CTCCATCAGGCAGTTTCCCAGACATTACTC
RPA-F2	CCAAATTGAAGAGTTTGATCATGGCTCAGA
RPA-R2	GGTCTTGCGACGTTATGCGGTATTAGCTAC
RPA-F3	CCAAATTGAAGAGTTTGATCATGGCTCAGA
RPA-R3	CCTCTTTGGTCTTGCGACGTTATGCGGTA
RPA-F4	GCCTAACACATGCAAGTCGAACGGTAACAG
RPA-R4	CCCTCTTTGGTCTTGCGACGTTATGCGGTA
RPA-F5	GCCTAACACATGCAAGTCGAACGGTAACAG
RPA-R5	ACCTACTAGCTAATCCCATCTGGGCACATC
RPA-F6	CCAAATTGAAGAGTTTGATCATGGCTCAGA
RPA-R6	CCAGACATTACTCACCCGTCCGCCACTCGT

Table S1. Sequence of RPA primers

Name	DNA Sequence $(5'-3')$
Correct DNA	TGGCGGACGGGTGAGTAA
Mismatch DNA	TCCCCACGCTTTCGCACC
Mismatch-1	TAGCGGACGGGTGAGTAA
Mismatch-2	TGATGGACGGGTGAGTAA
Mismatch-3	TGCTTGACGGGTGAGTAA
Mismatch-4	TGCTAAACGGGTGAGTAA
Random Mismatch	ATCGGTCCTGACTTAACG

Table S2. DNA Sequence of gel retardation and Specific assays

Name	DNA Sequence $(5'-3')$
E. coli-F	TGGCGGACGGGTGAGTAA
E. coli-R	TCCCCACGCTTTCGCACC
TALEs-F	GCGCGGATCCGTAGATTTGAGAACTTTGG
TALEs-R	GATGTAAGCTTGTGCCACTCGATGTGATGT
qPCR-F	CTACAGGTGAAGGTGGAATGG
qPCR-R	TTCCTCTTTTCCTCTGCGC

Table S3. Primer sequences for PCR

Table S4. DNA Sequence of "humanoid" molecular beacon (H-MB)

Name	DNA Sequence $(5'-3')$
Head	GATCAACTACTACTTGGT (FAM) AAGGGTTTTTTTTTTTTT
Tread	TTCCCTTT (BHQ-1) GTTTCTCTAATTAAGGC
Right arm	GCCTTAATTAGAGAAACTTTACTCACCCGTCCGCCA
Left arm	TGGCGGACGGGTGAGTAATCCAAGTAGTAGTTGATC
Right leg	TGGCGGACGGGTGAGTAA
Left leg	TTACTCACCCGTCCGCCA

Table S5. Comparison between TALEs with other methods in the literature.

Methods	Linear range	LODs	Recognition	Measure	Ref.
	(cfu/mL)	(cfu/mL)	element	process	
EIA	7.8×10-7.8×10 ⁶	3.4×10	Ag-Ab	Complex	1
ELISA	$1.0 \times 10^{4} - 1.0 \times 10^{7}$	1.0×10^{4}	Ag-Ab	Complex	2
Raman	-	10	Ag-Ab	Complex	3
Spectroscopy					
QD-Apt	$1.0 \times 10 - 1.0 \times 10^4$	-	Apt	Complex	4
RT-PCR	$2.0 \times 10^{2} - 6 \times 10^{5}$	2.0×10^{2}	DNA	Complex	5
PCR	1.2×10 ³ -1.2×10 ⁸	1.2×10^{3}	DNA	Medium	6
TALEs	3.0-1.0×10 ⁹	3.0	DNA-TALEs	Simple	This work

Sample	Spiking levels (cfu/mL)	ΔF (a.u.)	Amount measured (cfu/mL)	Recovery (%)
1	1×10	1766.1	0.942×10	94.2
2	1×10^{4}	1310.3	1.057×10^{4}	105.7
3	1×10 ⁵	1161.5	1.047×10 ⁵	104.7

Table S6. Recovery of E. coli at different concentration levels in mineral water samples (n =3).

References

- 1 Q. Guo, J. J. Han, S. Shan, D. F. Liu, S. S. Wu, Y. H. Xiong and W. H. Lai, *Biosens. Bioelectron.*, 2016, **86**, 990-995.
- 2 J. Khang, D. Kim, K. W. Chung and J. H. Lee, *Talanta*, 2016, **147**, 177.
- 3 L. Wang, P. Li, Z. Zhang, Q. Chen, Z. P. Aguilar, H. Xu, L. Yang, F. Xu, W. Lai and Y. Xiong, *Food Control*, 2014, **36**, 119-125.
- 4 X.-c. S. Z. Y. C. L. Y. L. L. G. Y. Zhou, Sensor. Actuat. B-Chem. , 2015, 221, 985-992.
- 5 R. R. Hu, Z. Z. Yin, Y. B. Zeng, J. Zhang, H. Q. Liu, Y. Shao, S. B. Ren and L. Li, *Biosens. Bioelectron.*, 2015, **78**, 31.
- 6 P. Zhu, D. R. Shelton, S. Li, D. L. Adams, J. S. Karns, P. Amstutz and C. M. Tang, *Biosens. Bioelectron.*, 2011, **30**, 337-341.