Supporting Information

One-step solvothermal fabrication of Cu@PANI core-shell nanospheres for hydrogen evolution

Ting Wanga, Dan Wua, Youliang Wanga, Tingbo Huanga, Gary Histandb, Tingting Wanga,\textdagger, Heping Zenga,\textdagger

a. Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China.

b. International School of Advanced Materials, South China University of Technology, Guangzhou, 510641, P. R. China.

Fig. S1. FTIR spectra of the samples prepared under different temperature
Fig. S2. TEM images for: (a) Cu/PANI-90; (b) Cu/PANI-120; (C) Cu/PANI-160; (d) Cu/PANI-180

Table S1. Elemental analysis of Cu/PANI composites

<table>
<thead>
<tr>
<th>Sample</th>
<th>Element Content (wt%)</th>
<th>N</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu/PANI-180</td>
<td></td>
<td>0.19</td>
<td>1.62</td>
</tr>
<tr>
<td>Cu/PANI-160</td>
<td></td>
<td>0.23</td>
<td>1.66</td>
</tr>
<tr>
<td>Cu/PANI-120</td>
<td></td>
<td>0.28</td>
<td>1.82</td>
</tr>
<tr>
<td>Cu/PANI-90</td>
<td></td>
<td>0.44</td>
<td>1.92</td>
</tr>
</tbody>
</table>
Fig. S3. Photocatalytic H\(_2\) evolution of Cu/PANI composites prepared at different temperature under solar light irradiation

Fig. S4. XRD spectra of Cu NPs and Cu@PANI2.5%
Fig. S5. HAADF-STEM and STEM-EDS elemental mapping images of Cu@PANI2.5% core-shell nanospheres

Fig. S6. Relationship of $(ahv)^2$ vs. E (eV) of PANI and Cu@PANI core-shell nanospheres.
Fig. S7. XRD spectra of Cu@PANI2.5%

Fig. S8. Time-resolved PL decay profiles for Cu NPs and Cu@PANI2.5% core-shell nanospheres
Fig. S9. XPS valence band spectra of Cu@PANI2.5%