Photoelectrochemical Properties of MOF Induced Surface Modified TiO$_2$ Photoelectrode

Wei Jiao, a, b Jiaxing Zhu, a Yun Ling, a Mingli Deng, a Yaming Zhou*, a and Pingyun Feng* b

a. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China

b. Department of Chemistry, University of California, Riverside, CA 92521, USA

Correspondence to Pingyun Feng email: pyfeng@ucr.edu or Yaming Zhou email: ymzhou@fudan.edu.cn

Fig. S1 Top (a, c) and cross-sectional (b, d) view for SEM images of the pristine TiO$_2$ electrode.
Fig. S2 SEM images of the InNi/N/TiO$_2$ electrode with 12 h synthesis time (a) before and (b, c) after heat treatment at 600 °C.

Fig. S3 Transient photocurrents of pristine TiO$_2$ and InNi/N/TiO$_2$ photoelectrodes with different synthesis time at 0.6 V vs SCE under simulated sunlight illumination.

Fig. S4 Transient photocurrents of InNi/N/TiO$_2$ annealed with different temperatures at 0.6 V vs SCE under simulated sunlight illumination.