Electronic Supplementary Information

In situ Synthesis of Ultrafine Metal Clusters triggered by Dodecaborate Supramolecular Organic Frameworks

Bin Qi, Xin Li, Liang Sun, Bo Chen, Hao Chen, Chenchen Wu, Haibo Zhang* and Xiaohai Zhou*

*College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Figure S1. FT-IR spectrum of pure Cs2[closo-B12H12], CB[7] and Cs2[closo-B12H12]@CB[7] assemblies..3
Figure S2. Views of the CB6/B12H122- complex XRD structure..4
Figure S3. Views of the CB7/B12Cl122- complex XRD structure..4
Figure S4. The photographic images of the obtained final metal/BOFs products..4
Figure S5. XRD results of CBn-BOFs and Au/CBn-BOFs..5
Figure S6. The survey XPS spectra (a) and high-resolution XPS Au 4f spectra (b) of Au-BOFs...5
Figure S7. XRD results of CBn-BOFs and Pd/CBn-BOFs..6
Figure S8. The survey XPS spectra (a) and high-resolution XPS Pd 3d spectra (b) of Pd-BOFs...6
Figure S9. XRD results of Ag/ BOFs..7
Figure S10. The survey XPS spectra (a) and high-resolution XPS Ag 3d spectra (b) of Ag/BOFs...7
Figure S11. XRD results of Pt/ BOFs..8
Figure S12. The survey XPS spectra (a) and high-resolution XPS Pt 4f spectra (b) of Pt/BOFs...8
Figure S13. The GC standard curves of (a) toluene and FAL, (b) toluene and FOL...9
Figure S14. The GC spectrum of the conversion of FAL to FOL treated with various Au/BOFs and BOFs catalysts..9
Figure S15. The GC spectrum of the recycling tests of FAL to FOL treated with Au/CB7-BOFs catalysts...9
Figure S16. The TEM image and powder XRD pattern of the Au/CB7-BOFs catalysts after 15th round of catalysis..10
Table S1. Comparison of the catalytic performances of Au/BOFs catalyst with already reported catalysts towards the selective reduction of FAL with FOL...10
1H NMR and 13C NMR spectra for the products listed in Table 2 of the main text...11
Reference..20
Figure S1. FT-IR spectrum of pure $\text{Cs}_2[\text{closo-B}_{12}\text{H}_{12}]$, $\text{CB}[7]$ and $\text{Cs}_2[\text{closo-B}_{12}\text{H}_{12}]@\text{CB}[7]$ assemblies.

Figure S2. Views of the $\text{CB}_6/\text{B}_{12}\text{H}_{12}^+\text{ complex XRD structure.}$
Figure S3. Views of the CB7/B$_{12}$Cl$_{12}^{2-}$ complex XRD structure.

Figure S4. The photographic images of (a) the metal/BOFs reaction systems standing for 0.5 h, (b) the obtained final metal/BOFs products.
Figure S5. XRD results of CBn-BOFs and Au/CBn-BOFs.

Figure S6. The survey XPS spectra (a) and high-resolution XPS Au 4f spectra (b) of Au-BOFs.
Figure S7. XRD results of CBn-BOFs and Pd/CBn-BOFs.

Figure S8. The survey XPS spectra (a) and high-resolution XPS Pd 3d spectra (b) of Pd-BOFs.
Figure S9. XRD results of Ag/BOFs.

Figure S10. The survey XPS spectra (a) and high-resolution XPS Ag 3d spectra (b) of Ag/BOFs.
Figure S11. XRD results of Pt/ BOFs.

Figure S12. The survey XPS spectra (a) and high-resolution XPS Pt 4f spectra (b) of Pt/BOFs.
Figure S13. The GC standard curves of (a) toluene and FAL, (b) toluene and FOL. A represented the integral value in the GC spectrum.

Figure S14. The GC spectrum of the conversion of FAL to FOL treated with various a) b) c) d) Au/BOFs and e) BOFs catalysts.
Figure S15. The GC spectrum of the recycling tests of FAL to FOL treated with Au/CB7-BOFs catalysts.

Figure S16. The TEM image (a) and powder XRD pattern (b) of the Au/CB7-BOFs catalysts after 15th round of catalysis.

Table S1. Comparison of the catalytic performances of Au/BOFs catalyst with already reported catalysts towards the selective reduction of FAL with FOL.

<table>
<thead>
<tr>
<th>catalyst</th>
<th>solvent</th>
<th>H2 pressure (bar)</th>
<th>temperature (°C)</th>
<th>time (h)</th>
<th>FOL yield (%)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(acac)3</td>
<td>/</td>
<td>30</td>
<td>120</td>
<td>9</td>
<td>98.1</td>
<td>2018[1]</td>
</tr>
<tr>
<td>Cu/AC–SO3H</td>
<td>2-propanol</td>
<td>4</td>
<td>100</td>
<td>3</td>
<td>47.3</td>
<td>2017[2]</td>
</tr>
<tr>
<td>SO42-/SnO2–APG</td>
<td>/</td>
<td>1</td>
<td>170</td>
<td>0.33</td>
<td>93.1</td>
<td>2017[3]</td>
</tr>
<tr>
<td>Pt-NPs@SiO2</td>
<td>heptane</td>
<td>40</td>
<td>80</td>
<td>4</td>
<td>87</td>
<td>2017[4]</td>
</tr>
<tr>
<td>LaCu0.67Si1.33</td>
<td>methanol</td>
<td>30</td>
<td>120</td>
<td>3</td>
<td>99</td>
<td>2017[5]</td>
</tr>
<tr>
<td>Ru-NNS</td>
<td>2-propanol</td>
<td>30</td>
<td>80</td>
<td>1</td>
<td>99</td>
<td>2017[6]</td>
</tr>
<tr>
<td>m-PhPZr</td>
<td>iPrOH</td>
<td>1</td>
<td>120</td>
<td>2</td>
<td>99</td>
<td>2017[7]</td>
</tr>
<tr>
<td>Co-Ru/C</td>
<td>2-propanol</td>
<td>1</td>
<td>150</td>
<td>4</td>
<td>100</td>
<td>2016[8]</td>
</tr>
<tr>
<td>Fe-Ru NPs@SILP</td>
<td>/</td>
<td>20</td>
<td>120</td>
<td>18</td>
<td>99</td>
<td>2016[9]</td>
</tr>
<tr>
<td>Ir@CN</td>
<td>H2O/HCOOH</td>
<td>1</td>
<td>100</td>
<td>18</td>
<td>99</td>
<td>2015[10]</td>
</tr>
<tr>
<td>Au/BOFs</td>
<td>2-propanol</td>
<td>1</td>
<td>45</td>
<td>1</td>
<td>99</td>
<td>This work</td>
</tr>
</tbody>
</table>
1H NMR and 13C NMR spectra for the products listed in Table 2 of the main text
References