Supporting information

Largely Enhanced Photocatalytic Hydrogen Production for CdS/(Au-ReS$_2$) Nanospheres by the Dielectric-Plasmon Hybrid Antenna Effect

Jia Liu,a Kai Chen,b Gui-Ming Pan,a Zhi-Jun Luo,a Ying Xie,a Ying-Ying Li,a Yong-Jie Lin,b
Zhong-Hua Hao,a Li Zhou,*a Si-Jing Ding*$_a^a$ and Qu-Quan Wang*$_{a,b}$

aDepartment of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, P. R. China.

bThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China.

‡ These authors contributed equally to this work.
Figure S1. TEM images of ReS$_2$ nanospheres with an average diameter of 114 ± 11 nm (a) and 218 ± 25 nm (b).
Figure S2. (a) Time evolution for photocatalytic generation of the H\(_2\) evolution amount versus irradiation time for CdS/(Au-ReS\(_2\)) complex with \(D = 114 \pm 11\) nm and \(D = 218 \pm 25\) nm. (b) Comparison of the H\(_2\) evolution activities of CdS/(Au-ReS\(_2\)) complex with \(D = 114 \pm 11\) nm and \(D = 218 \pm 25\) nm.