Continuous Processing of Phase-Change Materials into Uniform Nanoparticles for Near-Infrared-Triggered Drug Release

Qiaoshan Chen, Chunlei Zhu, Da Huo, Jiajia Xue, Haoyan Cheng, Baohong Guan, and Younan Xia

a The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
E-mail: younan.xia@bme.gatech.edu

b Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China

c School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Figure S1. Digital photograph of the homemade fluidic device fabricated using a PVC tube, a syringe needle, and a glass capillary tube.
Figure S2. Size distribution curves (by DLS) of the PCM nanoparticles prepared using different total volumetric rates at a fixed FRR of 50 when the concentrations of the PCM solution and lipid solution were fixed at 6 and 0.2 mg/mL, respectively.
Figure S3. Size distributions curves (by DLS) of the PCM nanoparticles prepared using PCM solutions with different concentrations. The FRR and total volumetric rate were kept at 50 and 700 μL/min, respectively, while the concentration of the lipid solution was 0.2 mg/mL.
Figure S4. Dynamic light scattering (DLS) data of the plain PCM nanoparticles and the DOX-ICG-loaded nanoparticles.