SUPPORTING INFORMATION

Photovoltaic Effect in Few-Layer ReS$_2$/WSe$_2$ Heterostructure

Chulho Park,a Ngoc Thanh Duong,a,b Seungho Bang,a,b Duc Anh Nguyen,a Hye Min Oh*a and Mun Seok Jeong*a,b

aDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
bCenter for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea

*Email: mjeong@skku.edu, ohmin@skku.edu
Figure S1. AFM images of the (a) few-layer ReS$_2$ transistor and (b) few-layer WSe$_2$ transistor. The thicknesses of few-layer ReS$_2$ and WSe$_2$ transistors are approximately 3.3 and 3.5 nm, respectively.

Figure S2. Gate dependence of the few-layer ReS$_2$/WSe$_2$ heterostructure. (a) Log I_{ds}–V_{ds} curve depending on the gate-bias, in the range of -50 V to 50 V. (b) I_{ds}–V_{ds} curve in the p-n junction regime (-60 V < V_{gs} < -30 V). At V_{gs} = -50 V, the few-layer ReS$_2$/WSe$_2$ heterostructure shows the highest rectification behavior.
Figure S3. Electrical properties of the few-layer ReS$_2$/WSe$_2$ heterostructure. (a) Log I_{ds}–log V_{ds} curve of the forward bias in the p-n junction regime ($V_{gs} = -50$ to -30 V) and in the n-n junction regime ($V_{gs} = -25$ to 50 V). (c) Log I_{ds}–log V_{ds} curve of the reverse bias depending on the gate bias. In the forward bias of the p-n junction regime, the few-layer ReS$_2$/WSe$_2$ heterostructure has a rapid current increase section only.

Figure S4. Optoelectronic properties of the few-layer ReS$_2$/WSe$_2$ heterostructure. (a) Short-circuit current (I_{sc}) and (b) open-circuit voltage (V_{oc}) with respect to the incident power of the 405-nm laser. I_{sc} exhibits a linear increase, and V_{oc} is saturated with incident power, as I_{sc} and V_{oc} are related to the illumination intensity and bandgap, respectively.
Figure S5. (a) Photovoltaic effect of the few-layer ReS$_2$/monolayer WSe$_2$ heterostructure. (b) Electrical power (P_{el}) with an incident laser power (P_{in}). (c) Fill factor with respect to P_{in}. All of measurement were conducted at -50 V gate bias with 405-nm laser. Although both layers have direct band gap, it exhibits low fill factor compared with few-layer ReS$_2$/WSe$_2$ heterostructure. Because this structure has very low short circuit current. Therefore, we assume that monolayer has not enough absorbing layer due to ultrathin thickness.