Supporting information

Ordered indium-palladium nanoparticles: synthesis and the role of indium boosting superior electrocatalytic activity for ethanol oxidation reaction

Yu-Ju Chen^a, Yi-Rui Chen^b, Cheng Hsuan Chiang^c, Kuo-Lun Tung^b, Tsung-Kuang Yeh^c and Hsing-Yu Tuan^{*a}

Department of Chemical Engineering, National Tsing Hua University, 101, Section 2,

Kuang-Fu Road, Hsinchu, Taiwan 30013, ROC

*Corresponding authors

Phone: (886)3-571-5131 ext:42509

Email: <u>hytuan@che.nthu.edu.tw</u>

Figure S1. TEM image of In_3Pd_5 compound prepared without TOP.

Figure S2. TEM images of nanocatalysts before and after EOR.

Figure S3. Scheme of possible pathway for EOR in alkaline media on In-Pd compound surface.

Catalyst	electrolyte	Improvement compare to Pd/C	Ref.
In ₃ Pd ₂ NP/C	1M KOH 1M ethanol	5.8 times	This work
In ₃ Pd ₅ NP/C	1M KOH 1M ethanol	4.0 times	This work
PdCo NTAs/CFC	1M KOH 1M ethanol	4.0 times	Angew. Chem. Int. Ed. 2015 , 54 , 3669
Pd7/Ru1 bimetallic nanodendrites	1M KOH 1M ethanol	3.0 times	Nanoscale. 2015, 7, 12445
Pd-PEDOT/graphene nanocomposites	1M KOH 1M ethanol	2.78 times	J. Mater. Chem. A. 2015, 3 (3), 1077
Au-Pd core-shell	0.27M EtOH 0.5 M KOH	3.07 times	Nano Lett. 2016, 16, 5514–5520
Porous bimetallic PdNi	1M KOH 1M ethanol	3.53 times	Journal of Colloid and Interface Science 493 (2017) 190–197
Pd ₄₀ Ag ₆₀ /C	1M NaOH 1M ethanol	3.5 times	Journal of Alloys and Compounds 688 (2016) 447e453
Pd ₃ Pb nanocrystals	0.5 KOH 1M ethanol	1.4 times	Journal of Power Sources 301 (2016) 160e169

Table S1. Comparison of the activity and durability of various Pd-containing nanomaterials for EOR in alkaline media

	OH radical	Before	Chemical	Chemical
	reacted with	adsorption	adsorption	reaction
		energy (eV)	energy (eV)	energy (eV)
Case1	Pd (Pd)	-83763.921	-84215.021	4.410
Case2	In (In_3Pd_5)	-45415.682	-45868.600	2.592
Case3	In (In_3Pd_2)	-48944.769	-49398.620	1.659
Case4	In (In)	-21019.070	-21473.828	0.752
Case5	Ge (Pd ₂ Ge)	-57119.648	-57571.342	3.816
Case6	Cu (PdCu)	-41367.140	-41820.531	2.119
Case7	Pb (Pd ₃ Pb)	-127213.185	-127662.365	6.331
Case8	Co/Pd mixing (PdCo)	-75533.962	-75986.518	2.954
Case9	Ag/Pd mixing (PdAg)	-119715.021	-120165.211	5.320
Case10	Sn (Pd ₂ Sn)	-72336.716	-72786.781	5.445

Table S2. OH \cdot adsorption energy on metal surface.

Chemical reaction energy (eV)= Chemical adsorption energy (eV) - OH \cdot energy - Before adsorption (eV), which OH radical energy is -455.510 eV.

Figure S4. Scheme for assembly of DMFC full stack.

Figure S5. Projected density of states (PDOS) of Pd 3d orbitals for a 24-atom nanocluster of InPd compound and Pd

Supplementary method 1

Discrete Fourier transform calculations were performed by CASTEP1, 2 a program that uses Kohn-Sham density functional theory³⁻⁵ and a plane-wave pseudopotential method^{6, 7}. An ultrasoft pseudopotential, which provides a lower cut-off energy compared with a norm-conserving pseudopotential, was used along the generalized gradient approximation^{7, 8} based on the Perdew-Burke-Ernzerh of exchange-correlation functional⁹. For all the compounds which was assumed to extend infinitely, a k-point (7,7,1) grid was used to describe a supercell and calculate the energy. By contrast, a gamma point grid was used to describe the molecular system of all compound. The cut-off energy was set to be 500 eV and the standard quasi-Newtonian BFGS optimization method¹⁰ was employed to relax the structure to its minimum energy configuration. The convergence criteria for the total energy, maximum ionic force, maximum ionic displacement, maximum stress and self-consistent field tolerance were 1×10^5 eV/atom, 3×10^{-2} eV/Å, 1×10^{-3} Å, 5×10^2 GPa and 2×10^{-3} Å, 5×10^{-3} GPa and 2×10^{-3} Å, 5×10^{-3} GPa and 2×10^{-3} Å, 5×10^{-3} GPa and 2×10^{-3} Å, 5×10^{-3} GPa and 2×10^{-3} Å, 5×10^{-3} GPa and 2×10^{-3} Å, $5 \times 10^$ 10⁻⁷ eV/atom, respectively. The cell lengths for x, y and z are 60, 60 and 10 Å, respectively.

- 1 M. Segall, P. J. Lindan, M. a. Probert, C. J. Pickard, P. J. Hasnip, S. Clark and M. Payne, *J. Phys.: Condens. Matter*, 2002, **14**, 2717.
- S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson and
 M. C. Payne, *Zeitschrift für Kristallographie-Crystalline Materials*, 2005, 220,

567-570.

- 3 L. Sham and W. Kohn, *Physical Review*, 1966, **145**, 561.
- 4 W. Kohn, *Phys. Rev.*, 1965, **140**, A1133.
- 5 A. Seidl, *Phys. Rev. B*, 1996, **53**, 3764.
- 6 M. Segall, C. Pickard, R. Shah and M. Payne, *Mol. Phys.*, 1996, **89**, 571-577.
- 7 M. Segall, R. Shah, C. Pickard and M. Payne, *Physical Review B*, 1996, **54**, 16317.
- 8 J. P. Perdew, *Phys. Rev. Lett.*, 1996, **77**, 3865.
- 9 J. P. Perdew and W. Yue, *Physical review B*, 1986, **33**, 8800.
- 10 B. G. Pfrommer, M. Côté, S. G. Louie and M. L. Cohen, *Journal of Computational Physics*, 1997, **131**, 233-240.