Orientation-dependent optical characterization of atomically thin transition metal ditellurides

Anh Tuan Hoang, Sachin M. Shinde, Ajit K. Katiyar, Krishna P. Dhakal, Xiang Chen, Hyunmin Kim, Suk Woo Lee, Zonghoon Lee, and Jong-Hyun Ahn

School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

Companion Diagnostics & Medical Technology Research Lab, DGIST, Daegu, Republic of Korea

School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea

* email: ahnj@yonsei.ac.kr
Supporting figure 1. (a) Growth profile for MoTe$_2$ crystal growth; Scale bar: 200 µm. (b) and (e) Optical image and Raman mapping of 1T’-MoTe$_2$. (c) and (f) Optical image and Raman mapping of hexagonal 2H-MoTe$_2$. (d) and (g) Optical image and Raman mapping of triangular 2H-MoTe$_2$. Scale bar: 10 µm.
Supporting figure 2. (a) Optical images of 1L-5L MoTe$_2$ crystals on 300 nm SiO$_2$/Si. (b) AFM topography and (c) Height profile indicate the thickness of corresponding crystal; Scale bar, 5 µm.
Supporting figure 3. (a) Non-polarized and polarized optical images with different rotational angles and AFM topography of 3L 1T'-WTe$_2$; Scale bar, 10 µm. (b) Raman spectra from 0° to 180° of polarized light and corresponding polar plots.
Supporting figure 4. (a) and (b) Dark-field TEM image and SAED pattern taken at GB region of 1T’-MoTe₂, respectively. (c) and (d) Dark-field TEM image and SAED pattern taken at GB region of 2H-MoTe₂, respectively. Diffraction patterns of each grains are selected together for dark-field TEM images of 1T’- and 2H-MoTe₂; Scale bar, 20 nm.