Supplemental information

Electrical switching properties and structural characteristics of GeSe-GeTe films

Kun Ren¹,², Min Zhu¹, *, Wenxiong Song¹, *, Shilong Lv¹, Mengjiao Xia³, Yong Wang¹, Yaoyao Lu¹, Zhenguoj Ji² and Zhitang Song¹, *

¹ State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-System and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
² Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou, Zhejiang, 310018, People's Republic of China
³ International Laboratory of Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China

*e-mail: minzhu@mail.sim.ac.cn;
songwx@mail.sim.ac.cn
ztsong@mail.sim.ac.cn
Figure S1. (a) Densities of states (DOS) and projected COHP analysis for Ge-Te bonds in rhombohedral GeTe. The band gap for GeTe and GeSe are 0.27 eV and 0.95 eV, respectively. The left and right part of -pCOHP indicates the destabilization interaction (antibonding) and stabilization interaction (bonding), respectively. (b) DOS and projected COHP analysis for Ge-Se bonds in orthorhombic GeSe. Same COHP analysis as GeTe, but for GeSe. (c) The partial DOS of Ge, Te, and Se atoms in rhombohedral GeTe, Ge$_{50}$Se$_{13}$Te$_{37}$ and orthorhombic GeSe, projected onto their outmost s and p orbits. (d) DOS of GeTe and Ge$_{50}$Se$_{13}$Te$_{37}$ near Fermi level (ϵ_F). Band-tail states exists in Ge$_{50}$Se$_{13}$Te$_{37}$, which narrows the band gap.