Supporting Information

Morphology-controlled synthesis of 3D mesoporous rosette-like CeCoOx catalyst by pyrolysis of Ce[Co(CN)₆] and applied for the catalytic combustion of toluene

Weiliang Han, Haijun Zhao, Fang Dong, Zhicheng Tang*

(State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China

*Corresponding author. Tel.: +86-931-4968083, Fax: +86-931-4968019, E-mail address: tangzhicheng@licp.cas.cn (Z.Tang)
Fig.S1 SEM image of Ce[Co(CN)₆]-200 precursors with different hydrothermal time: (a) 6h, (b) 12h, (c) 18h (d) 24h.
Fig.S2 The formation mechanism of CeCoOx-200.

\[K_3Co(CN)_6 + \text{Distilled water} \]
\[\downarrow \text{Dropwise adding} \]
\[\text{Ce(CH}_3\text{COO)}_3 + \text{PVP} + \text{Anhydrous ethanol} + \text{Distilled water} \]

- Hydrothermal reaction
- Calcined at 500 °C
- 6 h
- 12 h
- 24 h
- 18 h
Fig.S3 STEM and Energy dispersive X-ray spectrometry elemental maps of

CeCoOx-25 (a, d, g), CeCoOx-100 (b, e, h) and CeCoOx-200 (c, f, i)
Fig.S4 The Size distribution of CeCoOx-100 and CeCoOx-200.

- **CeCoOx-25**
 - Average particle size = 4.49 nm

- **CeCoOx-100**
 - Average particle size = 9.15 nm

- **CeCoOx-200**
 - Average particle size = 8.15 nm
<table>
<thead>
<tr>
<th>Phonon Mode</th>
<th>$F_{2g}(a)$</th>
<th>$2TA$</th>
<th>$F_{2g}(b)$</th>
<th>E_g</th>
<th>$F_{2g}(c)$</th>
<th>O_v</th>
<th>$F_{2g}(d)$</th>
<th>A_{1g}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeCoOx-25</td>
<td>187</td>
<td>-</td>
<td>460</td>
<td>479</td>
<td>520</td>
<td>597</td>
<td>-</td>
<td>680</td>
</tr>
<tr>
<td>CeCoOx-100</td>
<td>-</td>
<td>245</td>
<td>445</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CeCoOx-200</td>
<td>181</td>
<td>-</td>
<td>446</td>
<td>-</td>
<td>510</td>
<td>591</td>
<td>605</td>
<td>665</td>
</tr>
<tr>
<td>Literature20, 23, 24</td>
<td>194</td>
<td>256</td>
<td>465</td>
<td>482</td>
<td>522</td>
<td>595</td>
<td>618</td>
<td>691</td>
</tr>
</tbody>
</table>
Fig. S5 The XPS survey and N1s of CeCoOx catalysts.
Fig. S6 CO-TPR of CeCoOx catalysts.
<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Peak α Position</th>
<th>Area / °C</th>
<th>Peak β Position</th>
<th>Area / °C</th>
<th>Peak γ Position</th>
<th>Area / °C</th>
<th>Peak δ Position</th>
<th>Area / °C</th>
<th>Peak ε Position</th>
<th>Area / °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CeCoOx-25</td>
<td>-</td>
<td>-</td>
<td>277</td>
<td>770</td>
<td>308</td>
<td>2000</td>
<td>480</td>
<td>3500</td>
<td>520</td>
<td>8000</td>
</tr>
<tr>
<td>CeCoOx-100</td>
<td>-</td>
<td>-</td>
<td>298</td>
<td>451</td>
<td>369</td>
<td>2112</td>
<td>431</td>
<td>1054</td>
<td>473</td>
<td>616</td>
</tr>
<tr>
<td>CeCoOx-200</td>
<td>136</td>
<td>275</td>
<td>297</td>
<td>9840</td>
<td>325</td>
<td>3745</td>
<td>415</td>
<td>41468</td>
<td>483</td>
<td>15179</td>
</tr>
</tbody>
</table>