Unexpected redox behavior of high surface alumina containing highly dispersed cerium cations

Juliana Fonseca,ab Nicolas Bion,*a Yordy Licea Fonseca,c Cláudia M. Morais,a Maria do Carmo Rangel,b Daniel Dupreza and Florence Eprona

aInstitut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), University of Poitiers, CNRS, 4 rue Michel Brunet, TSA51106, F86073 Poitiers Cedex 9, France.

bGECCAT Grupo de Estudo em Cinética e Catálise, Instituto de Química. Universidade Federal da Bahia, Campus Universitário de Ondina, Federação, 40 170-290, Salvador, BA, Brazil.

cDICAP-CENANO, Instituto Nacional de Tecnología. Av. Venezuela 82, CEP: 20081-312, Rio de Janeiro, RJ, Brasil.

Corresponding Author

* nicolas.bion@univ-poitiers.fr

SUPPORTING INFORMATION
Figure S1. TG-DTA profiles for the as-synthesized samples (a) Al, (b) Ce2Al, (c) Ce10Al and (d) Ce20Al.

Figure S2. N\textsubscript{2} adsorption-desorption curves (a) and corresponding BJH desorption pore size distribution (b) obtained over the solids after calcination at 600 °C.

Figure S3. X-ray diffraction patterns recorded under air atmosphere on 20 – 80° region at: RT, 400, 600, 800, 1000 °C and RT after heating; for the samples: (a) Ce2Al; (b) Ce10Al; (c) Ce20Al; and all the samples heated up to 1000 °C and cooled down to RT.

Figure S4. TEM picture of Ce20Al sample.

Figure S5. FTIR subtraction spectra collected after CO\textsubscript{2} adsorption at RT and desorption under secondary vacuum at 150 ºC.

Figure S6. Ce L\textsubscript{3} edge XANES spectra of CeO\textsubscript{2}, CeAlO\textsubscript{3} and CeXAl samples at RT. The peaks contributions A\textsubscript{1}, A\textsubscript{2}, B, C and D were assigned as explained in reference [1].

Figure S7. EXAFS k3–weighted oscillations for Ce10Al (green line), Ce20Al (red line) and CeO\textsubscript{2} (blue line).

Figure S8. 27Al-17O heteronuclear correlation spectra of 17O-exchanged Al sample.

Figure S9. X-ray diffraction patterns recorded under hydrogen atmosphere on 20 – 80° region at: RT, 400, 600, 800, 1000 °C and RT after heating over Ce15Al sample.
Figure S1. TG-DTA profiles for the as-synthesized samples (a) Al, (b) Ce2Al, (c) Ce10Al and (d) Ce20Al.
Figure S2. N$_2$ adsorption-desorption curves (a) and corresponding BJH desorption pore size distribution (b) obtained over the solids after calcination at 600 °C.
Figure S3. X-ray diffraction patterns recorded under air atmosphere on 20 – 80° region at: RT, 400, 600, 800, 1000 °C and RT after heating; for the samples: (a) Ce2Al; (b) Ce10Al; (c) Ce20Al; and all the samples heated up to 1000 °C and cooled down to RT.
Figure S4. TEM picture of Ce20Al sample

The mean interplanar spacing measured on some particles matched the distance between two consecutive planes expected for the fluorite cubic phase of cerium dioxide (~0.31 nm).
Figure S5. FTIR subtraction spectra collected after CO\textsubscript{2} adsorption at RT and desorption under secondary vacuum at 150 °C.
Figure S6. Ce L$_3$ edge XANES spectra of CeO$_2$, CeAlO$_3$ and CeXAl samples at RT. The peaks contributions A$_1$, A$_2$, B, C and D were assigned as explained in reference [1].
Figure S7. EXAFS k^3–weighted oscillations for Ce10Al (green line), Ce20Al (red line) and CeO$_2$ (blue line)
Figure S8. 27Al-17O heteronuclear correlation spectra of 17O-exchanged Al sample
Figure S 9. X-ray diffraction patterns recorded under hydrogen atmosphere on 20 – 80° region at: RT, 400, 600, 800, 1000 °C and RT after heating over Ce15Al sample.

Reference