Electronic Supplementary Information (ESI)

FeP@C Nanoarray Vertically Grown on Graphene Nanosheets: An Ultrastable Li-Ion Battery Anode with Pseudocapacitance-boosted Electrochemical Kinetics

Bao-Hua Hou, Ying-Ying Wang, Qiu-Li Ning, Chao-Ying Fan, Xiao-Tong Xi, Xu Yang, Jiawei Wang, Jing-Ping Zhang, Xinlong Wang, Xing-Long Wu

a National & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China.
b Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
c Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, P. R. China.
d State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China

*Corresponding Author

E-mail address: xinglong@nenu.edu.cn (X.–L. Wu)

Calculation process of TGA

\[FeP + 2O_2 \rightarrow \frac{1}{2}Fe_2O_3 + \frac{1}{2}P_2O_5 \]

\[M_{FeP} = 87, M_{O_2} = 32 \]

For U-FP@C:

\[m_{FeP1} + 2 \cdot \frac{m_{FeP1}}{M_{FeP}} \cdot M_{O_2} = 131\% \]

\[m_{FeP1} = 75\% \]

\[m_{C1} = 1 - m_{FeP1} = 25\% \]

For G-⊥FP@C-NA:

\[m_{FeP2} + 2 \cdot \frac{m_{FeP2}}{M_{FeP}} \cdot M_{O_2} = 119\% \]

\[m_{FeP2} = 69\% \]

\[m_{C2} = m_{FeP2} \cdot \frac{m_{C1}}{m_{FeP1}} = 23\% \]

\[m_{G} = 1 - m_{FeP2} - m_{C2} = 8\% \]
Figure S1. (a, b) The SEM images of G⊥FP@C-NA with different scale. (c, d) The TEM images of G⊥FP@C-NA, and the yellow line marks the FeP nanorods.

Figure S2. The charge and discharge curves of the initial three cycles at 50 mAh g⁻¹ for G⊥FP@C-NA and U-FP@C.
Figure S3. SEM images on the surface of G\(_{\perp}\)FP@C-NA electrode after 100 cycles at 500 mA g\(^{-1}\).

Figure S4. SEM images on the surface of U-FP@C electrode after 100 cycles at 500 mA g\(^{-1}\).
Figure S5. (a) Rate performance and (b) charge and discharge curves at different current densities of G$_{\perp}$FP@C-NA and U-FP@C without the active process.

Figure S6. (a) XRD pattern, (b) SEM image, (c) GCD curves, rate performance and cycling stability of LiFePO$_4$.
Figure S7. GCD curves of G∥FP@C-NA//LiFePO$_4$ full cell.

Figure S8. A photograph shows that the full battery can light up a LED bulb.

Figure S9. Rate performance of G∥FP@C-NA//LiFePO$_4$ full cell.
Figure S10. Cycling stability of G⊥FP@C-NA//LiFePO₄ full cell.

Figure S11. (a) CV curves at different scan rate, (b) log(i) versus log(v) plot, and (c) the pseudocapacitive contribution at different scan rates and (d) CV curve with the pseudocapacitive fraction at a scan rate of 1 mV s⁻¹ of U-FP@C.
Figure S12. Nyquist plots of G⊥FP@C-NA and U-FP@C from 1 MHz to 0.1 Hz.

Table S1. The comparison of the cycling stability between the present G⊥FP@C-NA and other FeP-based anode materials previously reported in recent years.

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Samples</th>
<th>Coulombic Efficiency (1st cycle)</th>
<th>Current density (mA g⁻¹)</th>
<th>Capacity (1st cycle) (mAh g⁻¹)</th>
<th>Cycle numbers (n)</th>
<th>Capacity after cycle (mAh g⁻¹)</th>
<th>Capacity decay rate per cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G/FeP</td>
<td>71.60%</td>
<td>500</td>
<td>768.2</td>
<td>500</td>
<td>1009</td>
<td>-0.06%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2000</td>
<td>506.5</td>
<td>1300</td>
<td>355.9</td>
<td>0.02%</td>
</tr>
<tr>
<td>2[1]</td>
<td>H-FeP@C@GR</td>
<td>74%</td>
<td>200</td>
<td>1154</td>
<td>100</td>
<td>771</td>
<td>0.33%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>885</td>
<td>300</td>
<td>542</td>
<td>0.13%</td>
</tr>
<tr>
<td>3[2]</td>
<td>FeP@rGO</td>
<td>73%</td>
<td>100</td>
<td>1180</td>
<td>100</td>
<td>997</td>
<td>0.16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td>475</td>
<td>400</td>
<td>470</td>
<td>0.00%</td>
</tr>
<tr>
<td>4[3]</td>
<td>FeP</td>
<td>58.1%</td>
<td>100</td>
<td>575</td>
<td>50</td>
<td>334</td>
<td>0.84%</td>
</tr>
<tr>
<td>5[4]</td>
<td>FeP@C</td>
<td>70%</td>
<td>200</td>
<td>720</td>
<td>100</td>
<td>720</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>500</td>
<td>610</td>
<td>400</td>
<td>610</td>
<td>0.00%</td>
</tr>
<tr>
<td>6[5]</td>
<td>Mesoporous FeP</td>
<td>49%</td>
<td>144</td>
<td>390</td>
<td>30</td>
<td>355</td>
<td>0.30%</td>
</tr>
<tr>
<td>7[6]</td>
<td>Nanorod-FeP@C</td>
<td>28.10%</td>
<td>30</td>
<td>277</td>
<td>200</td>
<td>480</td>
<td>-0.37%</td>
</tr>
<tr>
<td>8[7]</td>
<td>Nanoscaled FePy</td>
<td>75%</td>
<td>20</td>
<td>1486</td>
<td>10</td>
<td>1089</td>
<td>2.67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>908</td>
<td>10</td>
<td>581</td>
<td>3.60%</td>
</tr>
<tr>
<td>9[8]</td>
<td>FeP₂-amorphous</td>
<td>61%</td>
<td>0.1C</td>
<td>766</td>
<td>10</td>
<td>882</td>
<td>-1.51%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2C</td>
<td>310</td>
<td>100</td>
<td>300</td>
<td>0.03%</td>
</tr>
</tbody>
</table>
Reference

